Math 4108 Homework 10

Due at the beginning of class on Tuesday, March 24.

§16.10 #10
§16.11 #5

Not from the text:

- 1. Let *M* be an $n \times n$ matrix with coefficients in **C**. Use the Jordan normal form of *M* to prove that if $M^n = I_n$, then *M* is diagonalizable.
- 2. In this problem you will prove the following generalization of Theorem 16.11.1:

Theorem (Kummer). Let *n* be a positive integer and let *F* be a subfield of **C** containing μ_n , the *n*th roots of unity. Let K/F be a Galois extension with cyclic Galois group *G* of order *n*. Then $K = F(\sqrt[n]{\beta})$ for some $\beta \in F$.

- (a) Let σ generate G. Use the previous problem to show that the eigenvalues of σ (considered as an F-linear transformation from K to itself) are nth roots of unity which generate the cyclic group μ_n .
- (b) Let λ be an eigenvalue of σ , and let $\beta \in K^{\times}$ be an eigenvector. Let r be the order of λ (as an element of μ_n). Prove that $\beta^r \in F$ and that $x^r \beta^r$ is the minimal polynomial of β .
- (c) Let $\lambda_1, \ldots, \lambda_m$ be eigenvalues of σ with eigenvectors $\beta_1, \ldots, \beta_m \in K^{\times}$. Let $\lambda = \lambda_1 \cdots \lambda_m$ and $\beta = \beta_1 \cdots \beta_m$. Let r be the order of λ . Prove that $\beta^r \in F$ and that $x^r \beta^r$ is the minimal polynomial of β .
- (d) Complete the proof of the Theorem.

Note:

1. To clarify #16.10.10: the index *i* runs from 1 to p-1, inclusive. You may assume the characteristic is zero. Hint: what is the sum of the γ_i ?