Math 4108 Homework 11

Due at the beginning of class on Tuesday, March 31.

§12.2 #2, 6, 7

Not from the text:

- 1. (30 points) Let $\delta = \sqrt{-5}$ and let $\mathbf{Z}[\delta] = \{a + b\delta : a, b \in \mathbf{Z}\}$, a subring of C.
 - (a) For $z \in \mathbb{Z}[\delta]$, show that $|z|^2 \in \mathbb{Z}$, where $|z|^2$ is the usual complex absolute value.
 - (b) Prove that the following sets are equal:

$$\mathbf{Z}[\delta]^{\times} = \left\{ z \in \mathbf{Z}[\delta] : |z|^2 = 1 \right\} = \{ \pm 1 \}.$$

- (c) Prove that $2, 3, 1 + \delta, 1 \delta$ are irreducible elements of $\mathbb{Z}[\delta]$, no two of which are associate. [Hint: if 2 = uv is a proper factorization, what is $|u|^2$?]
- (d) Use (3) and the equation

$$2 \cdot 3 = 6 = (1 + \delta)(1 - \delta)$$

to prove that $2, 3, 1 + \delta, 1 - \delta$ are not prime elements. Conclude that $\mathbf{Z}[\delta]$ is not a unique factorization domain.

- (e) Let $I = (2, 1 + \delta)$. Show that *I* is generated as an *abelian group* by 2 and $1 + \delta$, draw a picture of *I* in the complex plane, and prove that *I* is not the unit ideal.
- (f) Show that the ideal $I = (2, 1 + \delta)$ is not principal. [Hint: if I = (z) show that $z \mid 2$ and $z \mid 1 + \delta$.]
- (g) Prove that a greatest common divisor of $3(1 + \delta)$ and 6 does not exist in $\mathbb{Z}[\delta]$. [Hint: if a greatest common divisor d exists, show that $3 \mid d$ and that d/3 divides $1 + \delta$ and 2.]