Math 4108 Homework 14

Due at the beginning of class on Tuesday, April 21.

§13.6 #7 §13.7 #1

Not from the text:

- 1. (a) Let A be a fractional ideal in $\mathbf{Q}(\delta)$ and let $\overline{A} = \{\overline{\alpha} : \alpha \in A\}$. Prove that $A\overline{A}$ is a principal fractional ideal.
 - (b) Let A be a fractional ideal in $\mathbf{Q}(\delta)$. Prove that $\langle A \rangle^{-1} = \langle \overline{A} \rangle$.
 - (c) Prove that two fractional ideals A, A' in $\mathbf{Q}(\delta)$ are similar if and only if there exists a fractional ideal C such that AC and A'C are both principal.
- 2. (a) Prove that the quadratic integer ring in $\mathbf{Q}(\sqrt{-7})$ is a PID. [Hint: what is $\lfloor \mu \rfloor$ in this case?]
 - (b) Do the same for $\mathbf{Q}(\sqrt{-11})$.
- 3. Let d = -163, $\delta = \sqrt{d}$, and $\eta = \frac{1}{2}(1+\delta)$.
 - (a) Prove that $Cl(\mathbf{Q}(\delta))$ is generated by the classes of the prime ideals P with $N(P) \in \{2, 3, 5, 7\}$.
 - (b) Prove that $\mathbf{Z}[\eta]$ is a PID.
- 4. Prove that the quadratic integer rings in $\mathbf{Q}(\sqrt{-19})$, $\mathbf{Q}(\sqrt{-43})$, and $\mathbf{Q}(\sqrt{-67})$ are all PIDs. This completes Gauss' list: you've proved on the homework that the quadratic integer ring in $\mathbf{Q}(\sqrt{d})$ is a PID for d = -2, -3, -7, -11, -19, -43, -67, -163. [We did d = -1 in class.]
- 5. Let d = -6 and $\delta = \sqrt{d}$.
 - (a) Factor the ideals (2) and (3) into prime ideals in $\mathbb{Z}[\delta]$.
 - (b) Factor the ideal (6) into prime ideals in $\mathbf{Z}[\delta]$.
 - (c) Determine the class group of $\mathbf{Q}(\delta)$.