
MATH 4108
FINAL EXAMINATION

Name

1 2 3 4 5 Total

• There are 5 problems on this exam. Please solve at least 4 of them. If you
solve all 5, I’ll count the highest 4 scores toward your grade.

• Each problem is worth 20 points, for a maximum score of 80. There are five
points of extra credit available on Problem 4.

• The exam is due on Thursday, April 30, before 5pm. You can either email
me your solutions, or slip them under my office door.

• You may use your course notes and completed homework assignments, the
textbook, and a graphing calculator. No other aids are permitted, and you are
not allowed to discuss the problems with your classmates.

• All answers must be justified unless otherwise noted, and all proofs must be
written in clear and grammatical English.

• You may cite any theorem, lemma, proposition, etc. proved in class or in the
sections we covered in the text, in addition to any assigned homework prob-
lem.

• Good luck, and start early!



Problem 1.

Prove that the roots of the polynomial x5 − 4x − 1 ∈ Q[x] are not solvable by
radicals.

Solution.
This polynomial is irreducible modulo 3, so it is irreducible over Q. It has exactly

three real roots, so its Galois group is S5 by Corollary 16.12.6. Therefore its roots
are not solvable by Theorem 16.12.4.



Problem 2.

Let d < 0 be a squarefree integer which is congruent to 1 modulo 4. Let δ =
√
d,

η = 1
2
(1 + δ), and h = 1

4
(1− d), and let

f(x) = (x− η)(x− η) = x2 − x+ h,

the minimal polynomial for η. Let R = Z[η], and suppose that R is a
unique factorization domain. Thus we know from Heegner’s theorem that
d ∈ {−3,−7,−11,−19,−43,−67,−163}, but you may not use this fact as we
haven’t proven it.

i. Prove that N(η) = h and that η has minimal norm among all elements of
R \ Z. [Draw a picture.]

ii. Prove that every prime integer p < h is prime in R.

iii. Let m be a positive integer with m < h. Prove that f(m) is a prime integer.
[Hint: first show f(m) < h2.]

In particular, taking d = −163, the minimal polynomial is f(x) = x2 − x + 41,
and the forty values f(1), f(2), f(3), . . . , f(40) are all prime numbers!

Solution.

i. We have N(η) = ηη = f(0) = h. It is clear from the picture that if α = a + bη
then |α| > |η| if |b| ≥ 2 or if |b| = 1 and α /∈ {±η,±(η − 1)}.

0

η

ii. Suppose p < h is not prime in R. Then (p) = PP for a prime ideal P . Since P
is principal, P = (α) for some α ∈ R. Clearly α /∈ Z since p is a prime integer.
But N(α) = p < h, which is impossible by (i).

iii. First note that if 0 < m < h then

f(m) = m2 −m+ h = m(m− 1) + h < h(h− 1) + h = h2.

If f(m) is not prime then its smallest prime divisor p is at most
√
f(m) < h.

By (ii), we know that p is prime in R. Since

p | f(m) = (m− η)(m− η)

we have p | m± η, which is impossible since η/p /∈ R.



Problem 3.

Let δ =
√
−17 and let R = Z[δ], the quadratic integer ring in Q(δ). Calculate

the class group of Q(δ), and give representatives for all of the ideal classes.

Solution.
We know from Theorem 13.7.10 that Cl(Q(δ)) is generated by the prime ideals

P ⊂ R such that N(P ) ≤ bµc = 4. By Lemma 13.8.4, (2) = P 2 for P = (2, 1 + δ),
and P is not principal. Hence 〈P 〉 has order 2 in Cl(Q(δ)). Since x2 +17 ≡ x2− 1 =
(x+1)(x− 1) mod 3, we have (3) = QQ for Q = (3, 1+ δ). To find relations among
P and Q, we search for elements α of small norm. Taking α = 1 + δ, we have
N(α) = 18 = 2 · 32, so

(α)(α) = (2) · (3)2 = P 2Q2Q2.

The factorizations of the ideals (α) and (α) are conjugate to each other and multiply
to P 2Q2Q2. We have α ∈ P and α ∈ Q, so both P and Q divide (α), and hence
PQ | (α). On the other hand, α = 1 + δ /∈ Q, since otherwise Q ⊃ Q and hence
Q = Q, but (3) does not ramify. Therefore, (α) = PQ2, so taking ideal classes,

〈R〉 = 〈(α)〉 = 〈P 〉〈Q〉2.

This implies 〈Q〉2 = 〈P 〉−1 = 〈P 〉, so 〈Q〉 has order 4 in Cl(Q(δ)) and Cl(Q(δ)) is
generated by 〈Q〉. It follows that Cl(Q(δ)) is cyclic of order four, and

Cl(Q(δ)) =
{
〈R〉, 〈Q〉, 〈P 〉, 〈Q〉

}
.



Problem 4.

Let f(x) ∈ Q[x] be an irreducible quartic polynomial with exactly two real roots,
let K ⊂ C be its splitting field, and let G = Gal(K/Q) ≤ S4 be its Galois group.

i. Prove that G contains a transposition.

ii. Prove that G is S4 or D4.

iii. Find an example of such f where G = D4. [Hint: we saw one in class
during an extended example.]

iv. (Extra credit) Find an example of such f where G = S4.

Solution.

i. Complex conjugation is an automorphism of K which interchanges the two
complex roots of f .

ii. By definition, A4 is the subgroup of all even permutations of S4, and D2 ≤ A4.
But G contains a transposition, which is an odd permutation. If G = C4

then G is conjugate to {e, (1234), (13)(24), (4321)}, which does not contain a
transposition either. The only remaining transitive subgroups of S4 are S4 and
D4.

iii. Let f(x) = x4 − 2. This is irreducible by Eisenstein, and its roots are ± 4
√
2

and ±i 4
√
2, two of which are real. We have Q ⊂ Q( 4

√
2) ⊂ Q(i, 4

√
2) = K,

where [Q( 4
√
2) : Q] = 4 since x4 − 2 is irreducible, and [Q(i, 4

√
2) : Q( 4

√
2)] = 2

because i is quadratic and i /∈ Q( 4
√
2). Hence #G = 8, so G = D4 since none

of the other possibilities S4, A4, C4, D2 has 8 elements.

iv. Let f(x) = x4 − 2x − 2. This has two real roots because f ′(x) = 4x3 − 2
has exactly one real root and f(0) = −2 < 0. It is irreducible by Eisenstein’s
criterion. Its resolvent cubic equation (cf. Exercise 16.9.9(a)) is

g(x) = x3 + 8x− 4,

which is irreducible by the rational root theorem. Hence G = S4.



Problem 5.

Let d = −23, let δ =
√
−23, let η = 1

2
(1 + δ), and let R = Z[η], the quadratic

integer ring in Q(δ).

i. Prove that (2) = PP for P = (2, η).

ii. Prove that P is not principal but P 3 is principal. [Hint: N(1 + η) = 8.]

iii. Prove that Cl(Q(δ)) ∼= C3.

iv. Prove that the cube of every fractional ideal in Q(δ) is principal.

Solution.

i. The minimal polynomial f(x) = x2−x+6 is congruent to x(x−1) modulo 2, so
(2) splits in R. We have (2) = PP for P = (2, η) since (2, η) ⊂ R corresponds
to the ideal (x) ⊂ F2[x]/(x

2 + x).

ii. The element 2 ∈ R is irreducible because N(α) ≥ 6 for all α ∈ Z[η] \Z. Hence
P is not principal since P | (2). As N(1 + η) = 8, we have

(1 + η)(1 + η) = (2)3 = P 3P 3.

Hence (1 + η) is P 3, P 2P , PP 2, or P 3. If (1 + η) = P 2P then 〈R〉 = 〈P 〉2〈P 〉 =
〈P 〉 since 〈P 〉 = 〈P 〉−1, which contradicts the fact that P is not principal.
Similarly, (1 + η) 6= PP 2, so either (1 + η) = P 3 or (1 + η) = P 3.

iii. We know from Theorem 13.7.10 that Cl(Q(δ)) is generated by the prime ideals
P ⊂ R such that N(P ) ≤ bµc = 2. In other words, Cl(Q(δ)) is generated by
〈P 〉. We have shown that the order of 〈P 〉 is equal to 3, so Cl(Q(δ)) is the
cyclic group of order 3 generated by P .

iv. This is a restatement of the fact that the cube of an element of Cl(Q(δ)) is
trivial.


