MATH 4108 FINAL EXAMINATION

Name	2						
						_	1
	1	2	3	4	5	Total	

- There are 5 problems on this exam. Please solve **at least 4** of them. If you solve all 5, I'll count the highest 4 scores toward your grade.
- Each problem is worth 20 points, for a maximum score of 80. There are five points of extra credit available on Problem 4.
- The exam is due on **Thursday, April 30, before 5pm**. You can either email me your solutions, or slip them under my office door.
- You may use your course notes and completed homework assignments, the textbook, and a graphing calculator. No other aids are permitted, and you are **not** allowed to discuss the problems with your classmates.
- All answers must be justified unless otherwise noted, and all proofs must be written in clear and grammatical English.
- You may cite any theorem, lemma, proposition, etc. proved in class or in the sections we covered in the text, in addition to any assigned homework problem.
- Good luck, and start early!

Problem 1.

Prove that the roots of the polynomial $x^5-4x-1\in {\bf Q}[x]$ are not solvable by radicals.

Problem 2.

Let d<0 be a squarefree integer which is congruent to 1 modulo 4. Let $\delta=\sqrt{d}$, $\eta=\frac{1}{2}(1+\delta)$, and $h=\frac{1}{4}(1-d)$, and let

$$f(x) = (x - \eta)(x - \overline{\eta}) = x^2 - x + h,$$

the minimal polynomial for η . Let $R=\mathbf{Z}[\eta]$, and suppose that R is a unique factorization domain. Thus we know from Heegner's theorem that $d\in\{-3,-7,-11,-19,-43,-67,-163\}$, but you may not use this fact as we haven't proven it.

- i. Prove that $N(\eta) = h$ and that η has minimal norm among all elements of $R \setminus \mathbf{Z}$. [Draw a picture.]
- ii. Prove that every prime integer p < h is prime in R.
- iii. Let m be a positive integer with m < h. Prove that f(m) is a prime integer. [Hint: first show $f(m) < h^2$.]

In particular, taking d=-163, the minimal polynomial is $f(x)=x^2-x+41$, and the forty values $f(1), f(2), f(3), \ldots, f(40)$ are all prime numbers!

Problem 3.

Let $\delta = \sqrt{-17}$ and let $R = \mathbf{Z}[\delta]$, the quadratic integer ring in $\mathbf{Q}(\delta)$. Calculate the class group of $\mathbf{Q}(\delta)$, and give representatives for all of the ideal classes.

Problem 4.

Let $f(x) \in \mathbf{Q}[x]$ be an irreducible quartic polynomial with exactly two real roots, let $K \subset \mathbf{C}$ be its splitting field, and let $G = \mathrm{Gal}(K/\mathbf{Q}) \leq S_4$ be its Galois group.

- i. Prove that G contains a transposition.
- ii. Prove that G is S_4 or D_4 .
- iii. Find an example of such f where $G=D_4$. [Hint: we saw one in class during an extended example.]
- iv. (Extra credit) Find an example of such f where $G=S_4$.

Problem 5.

Let d=-23, let $\delta=\sqrt{-23}$, let $\eta=\frac{1}{2}(1+\delta)$, and let $R=\mathbf{Z}[\eta]$, the quadratic integer ring in $\mathbf{Q}(\delta)$.

- i. Prove that $(2) = P\overline{P}$ for $P = (2, \eta)$.
- ii. Prove that P is not principal but P^3 is principal. [Hint: $N(1+\eta)=8$.]
- iii. Prove that $Cl(\mathbf{Q}(\delta)) \cong C_3$.
- iv. Prove that the cube of every fractional ideal in $\mathbf{Q}(\delta)$ is principal.