FRACTIONAL IDEALS

1. DEFINITION OF FRACTIONAL IDEALS

Let α be a nonzero element of the quadratic integer ring R inside a quadratic field $\mathbf{Q}(\delta)$. The reciprocal $\alpha^{-1} = \overline{\alpha}/N(\alpha)$ of α is contained in $\mathbf{Q}(\delta)$, but in general it will no longer be contained in R . Nonetheless, it is very convenient to have the ability to divide two elements of R.

We have seen that in many ways, ideals in R behave better than the elements of R. However, most ideals of R do not have a multiplicative inverses, just like most elements of R do not. Fractional ideals are a generalization of ordinary ideals which do admit inverses. A fractional ideal is to an ordinary ideal as Q is to Z.

Definition 1.1. Let R be the quadratic integer ring inside Q(δ). A *fractional ideal* of R is a nonzero subgroup $A \subset \mathbf{Q}(\delta)$ such that:

- (1) [Ideal] $\beta A \subset A$ for all $\beta \in R$, and
- (2) [Clearing denominators] there exists $\beta \in R \setminus \{0\}$ such that $\beta A \subset R$.

We will sometimes call ordinary ideals of R *integral ideals* in order to differentiate them from fractional ideals.

- *Remark.* (1) A fractional ideal A which is contained in R is the same as an integral ideal of R .
	- (2) If A is a fractional ideal of R and $\beta \in R$ is a nonzero element such that $B = \beta A \subset R$, then B is an integral ideal of R. Hence any fractional ideal has the form $A = \alpha B$ for an integral ideal $B \subset R$ and a nonzero element $\alpha = \beta^{-1}$ of $\mathbf{Q}(\delta)$.
	- (3) With the notation in (2), if $\beta A \subset R$ then $\overline{\beta}\beta A \subset R$ as well. But $\overline{\beta}\beta$ is the ordinary nonzero integer $n = N(\beta) \in \mathbb{Z}$, so we have $nA \subset R$. Therefore we can replace condition (2) in Definition [1.1](#page-0-0) with the equivalent condition "there exists a nonzero integer *n* such that $nA \subset R$." Hence any fractional ideal has the form $A = n^{-1}B$ for $n \in \mathbb{Z} \setminus \{0\}$ and $A \subset R$ an integral ideal.
	- (4) If $Q(\delta)$ is an imaginary quadratic field, then every ideal B of R is a lattice in C. Since any fractional ideal has the form $A = n^{-1}B$ for an integral ideal B, this is also a lattice in C, so fractional ideals are lattices as well.

Example 1.2. Let $R = \mathbf{Z}$. This is more of an analogy than an example since we have not defined fractional ideals in Q, but the definition is the same as Definition [1.1.](#page-0-0) A fractional ideal has the from rA for $r \in \mathbb{Q}^{\times}$ and $A \subset \mathbb{Z}$ a nonzero ideal. Since any ideal is principal, we have $A = (n)$ for $n \in \mathbb{Z} \setminus \{0\}$, and hence $rA = r(n) = (rn)\mathbb{Z}$. Since rn is an arbitrary element of Q^{\times} , we have

 $\{ \text{fractional ideals in } \mathbf{Q} \} = \{ r\mathbf{Z} \; : \; r \in \mathbf{Q}^{\times} \}.$

See Figure [1.](#page-1-0)

FIGURE 1. The fractional ideal $\frac{3}{2}$ **Z** in Q.

Example 1.3. Now let $R = \mathbb{Z}[i]$, the Gauss integers. This is a PID, so as in Ex-ample [1.2,](#page-0-1) any fractional ideal has the form $\alpha(\beta) = (\alpha\beta) \mathbf{Z}[i]$ for $\alpha \in \mathbf{Q}(i)^\times$ and $\beta \in \mathbf{Z}[i] \setminus \{0\}$. Therefore

{fractional ideals in $\mathbf{Q}(i)$ } = { $(a + bi)\mathbf{Z}[i] : a + bi \in \mathbf{Q}(i)^{\times}$ }.

See Figure [2.](#page-1-1)

FIGURE 2. The fractional ideal $(\frac{1}{2} + \frac{1}{2})$ $\frac{1}{2}i) {\bf Z}[i]$ in ${\bf Q}(i).$ This fractional ideal happens to contain $\mathbf{Z}[i]$, but this is a coincidence; see Figure [1.](#page-1-0)

Example 1.4. Let $\delta = \sqrt{-5}$ and $R = \mathbb{Z}[\delta]$. Let $A \subset \mathbb{C}$ be the lattice $\langle 1, \frac{1}{2} \rangle$ $\frac{1}{2}(1+\delta)$. Then A is a fractional ideal in $\mathbf{Q}(\delta)$, since $2\mathbf{A} = \langle 2, 1 + \delta \rangle = (2, 1 + \delta)$ is an ideal in R. See Figure [3.](#page-2-0)

Example 1.5. The full additive group $Q(\delta)$ is not a fractional ideal. It satisfies condition (1) of Definition [1.1,](#page-0-0) but it does not satisfy condition (2): there does not a exist a single element $\beta \in R \setminus \{0\}$ such that $\beta \mathbf{Q}(\delta) \subset \mathbf{R}$, for the same reason that there does not exist a single $n \in \mathbb{Z} \setminus \{0\}$ such that $n\mathbf{Q} \subset \mathbf{Z}$.

Most of the constructions we made for integral ideals work equally well for fractional ideals.

FIGURE 3. The fractional ideal $\langle 1, \frac{1}{2}$ $\frac{1}{2}(1+\delta)$ in Q($\sqrt{-5}$).

Definition 1.6. Let R be the quadratic integer ring inside $\mathbf{Q}(\delta)$ and let $\alpha_1, \dots, \alpha_n \in \mathbf{Q}(\delta)$ $\mathbf{Q}(\delta)$, not all equal to zero. The *fractional ideal generated by* $\alpha_1, \ldots, \alpha_n$ is

$$
(\alpha_1,\ldots,\alpha_n)\coloneqq \big\{\beta_1\alpha_1+\cdots+\beta_n\alpha_n\;:\;\beta_1,\ldots,\beta_n\in R\big\}.
$$

A fractional ideal of the form (α) for $\alpha \in \mathbf{Q}(\delta)^{\times}$ is called *principal*.

It is clear that if $\alpha_1, \dots, \alpha_n \in \mathbf{Q}(\delta)^\times$ are not all zero then $(\alpha_1, \dots, \alpha_n)$ is a subgroup of $\mathbf{Q}(\delta)$ which is closed under multiplication by R. There exists an integer $m \in \mathbf{Z} \setminus \{0\}$ such that $m\alpha_i \in R$ for each *i*: indeed, $\alpha_i = a_i + b_i\delta$ for $a_i, b_i \in \mathbf{Q}$; just choose m to clear the denominators of all of the $a_i,b_i.$ Then $m(\alpha_1,\ldots,\alpha_n)=(m\alpha_1,\ldots,m\alpha_n)$ is an integral ideal.

Any fractional ideal $A \subset \mathbf{Q}(\delta)$ has a lattice basis $\{\alpha, \beta\}$; then clearly $A = (\alpha, \beta)$. (Compare with the proof of the Main Lemma, 13.4.8 in Artin.) In other words, any fractional ideal can be generated by two elements.

Definition 1.7. Let $A, B \subset \mathbf{Q}(\delta)$ be two fractional ideals. The *product fractional ideal* is

$$
AB = {\alpha_1 \beta_1 + \cdots + \alpha_n \beta_n : n \ge 0, \alpha_i \in A, \beta_i \in B}.
$$

If $A, B \subset R$ are integral ideals then AB is just the product ideal. As with ordinary ideals, multiplication is associative and commutative: $AB = BA$ and $(AB)C =$ $A(BC)$ for fractional ideals $A, B, C \subset \mathbf{Q}(\delta)$. Moreover, one can calculate the product on generators: if $A = (\alpha_1, \alpha_2)$ and $B = (\beta_1, \beta_2)$ then

$$
AB = (\alpha_1\beta_1, \alpha_1\beta_2, \alpha_2\beta_1, \alpha_2\beta_2).
$$

Written this way, it is clear that AB is a fractional ideal. Note also that if $A = (\alpha)$ then

$$
AB = \alpha B = \{\alpha \beta : \beta \in B\}.
$$

Now we come to the main result about fractional ideals, which says that an integral ideal has a multiplicative inverse which is a fractional ideal.

Proposition 1.8. Let R be the quadratic integer ring inside $Q(\delta)$. The set of all frac*tional ideals in* Q(δ) *is an abelian group under multiplication of fractional ideals, with unit element* R*.*

Proof. As mentioned above, multiplication is associative and commutative, so we only need to show that inverses exist. Let A be a fractional ideal, and choose $n \in \mathbb{Z} \setminus \{0\}$ such that $nA = B \subset R$ is an integral ideal. Then $B\overline{B} = (m)$ for some $m \in \mathbb{Z} \setminus \{0\}$, and we have

$$
A\left(\frac{n}{m}\overline{B}\right) = (nA)\left(\frac{1}{m}\overline{B}\right) = B\left(\frac{1}{m}\overline{B}\right) = \frac{1}{m}(B\overline{B}) = \frac{1}{m}(m) = (1).
$$

$$
\overline{B} = A^{-1}.
$$

Hence $\frac{n}{m}\overline{B} = A^{-1}$

As an abstract group, the group of fractional ideals in $Q(\delta)$ is not very interesting, as we will see in a moment. On the other hand, as the next example shows, neither is the multiplicative group $Q_{>0}$.

Recall that the *direct sum* of an infinite family G_1, G_2, \ldots of abelian groups is defined as

$$
\bigoplus_{i=1}^{\infty} G_i = \big\{ (x_1, x_2, \ldots) \ : \ x_i \in G_i, \text{ only finitely many } x_i \text{ are nonzero} \big\}.
$$

The group law is just componentwise addition, and the additive identity is $(0, 0, \ldots)$. If $G_1 = G_2 = \cdots = \mathbf{Z}$ then every element of $\bigoplus_{i=1}^{\infty} \mathbf{Z}$ can be written uniquely as

$$
a_1e_1+\cdots+a_ne_n
$$

for some $n \geq 0$ and $a_1, \ldots, a_n \in \mathbb{Z}$, where $e_i = (0, \ldots, 0, 1, 0, \ldots)$ is the "*i*th unit coordinate vector." We call $\bigoplus_{i=1}^{\infty} \mathbf{Z}$ the *free abelian group on countably many generators*.

Example 1.9. Define φ : $\bigoplus_{p \text{ prime}} \mathbf{Z} \to \mathbf{Q}_{>0}$ by

$$
\varphi(a_2, a_3, a_5, \ldots) = 2^{a_2} 3^{a_3} 5^{a_5} \cdots
$$

Since only finitely many of the a_i are nonzero, this is a finite product. Clearly $\varphi(a +$ $b) = \varphi(a)\varphi(b)$, so φ is a group homomorphism. Suppose that $\varphi(a_2, a_3, a_5, \ldots) = 1$. Then

$$
2^{a_2}3^{a_3}5^{a_5}\cdots = 1.
$$

Moving the terms with negative exponent to the other side of this equation gives two different prime factorizations of the same integer, unless all of the $a_i = 0$. Hence φ is injective, by uniqueness of prime factorizations. Since any fraction can be written in the form

$$
r = \frac{2^{a_2} 3^{a_3} 5^{a_5} \cdots}{2^{b_2} 3^{b_3} 5^{b_5} \cdots}
$$

by factoring the numerator and the denominator, we have $r = \varphi(a_2 - b_2, a_3 - b_3, \ldots)$, so φ is surjective and hence an isomorphism. We have shown that $\mathbf{Q}_{>0}$ is isomorphic to the free abelian group on countably many generators.

The ideal-theoretic version of Example [1.9](#page-3-0) essentially says that unique factorization extends from ideals to fractional ideals.

Proposition 1.10. *Let* R *be the quadratic integer ring inside* Q(δ)*, let* Π *be the set of all nonzero prime ideals in* R*, and let* I *be the group of fractional ideals in* Q(δ)*. Define* $\varphi : \bigoplus_{P \in \Pi} \mathbf{Z} \to \mathcal{I}$ by

$$
\varphi(\ldots, a_P, \ldots) = \prod_{P \in \Pi} P^{a_P}.
$$

Then φ *is an isomorphism of abelian groups.*

In particular, for every fractional ideal I there are distinct prime ideals $P_1, \ldots, P_n \subset R$ and $a_1, \ldots, a_n \in \mathbf{Z}$ such that $I = P_1^{e_1} \cdots P_n^{e_n}$, and this expression is unique up to *reordering the factors.*

Proof. The proof is almost identical to Example [1.9.](#page-3-0) It is clear that φ is a homomorphism. If $\varphi(\ldots, a_P, \ldots) = R$ then we have an expression of the form $\prod P_i^{a_i} = R$; moving the terms with negative exponents to the right hand side of the equation gives two different factorizations of the same (integral) ideal, which by unique factorization of ideals is a contradiction unless all of the $a_i = 0$. For surjectivity, let $A \subset \mathbf{Q}(\delta)$ be a fractional ideal, and let $m \in \mathbb{Z} \setminus \{0\}$ be an integer such that $mA = B$ is an integral ideal. Let $(m) = \cdots P^{a_P} \cdots$ and $B = \cdots P^{b_P} \cdots$ be the prime factorizations of the (integral) ideals (m) and B. Then

$$
A = (m)^{-1}B = \cdots P^{b_P - a_P} \cdots = \varphi(\ldots, b_P - a_P, \ldots).
$$

Hence φ is an isomorphism, so fractional ideals have unique factorization.

2. FRACTIONAL IDEALS AND IDEAL CLASSES

Now we use the group structure on the set of fractional ideals in $Q(\delta)$ to define the class group, and we discuss the relation with similarity classes.

Definition 2.1. Let R be the quadratic integer ring inside $Q(\delta)$, let T be the group of fractional ideals in $\mathbf{Q}(\delta)$, and let $\mathcal{P} \subset \mathcal{I}$ be the subgroup of principal fractional ideals. The *class group* of $Q(\delta)$ is the quotient

$$
\operatorname{Cl}(\mathbf{Q}(\delta))\coloneqq \mathcal{I}/\mathcal{P}.
$$

Since $(\alpha)(\beta)^{-1} = (\alpha\beta^{-1})$, it is clear that $\mathcal P$ is in fact a subgroup of $\mathcal I$. Hence $Cl(Q(\delta))$ is an abelian group, which we will soon see is *finite*.

Recall that two ideals $A, B \subset R$ (resp. fractional ideals $A, B \subset \mathbf{Q}(\delta)$) are *similar* provided that there exists $z \in \mathbf{Q}(\delta)^\times$ such that $zA = B$. Similarity is an equivalence relation on the set of all ideals (resp. fractional ideals). An *ideal class* (resp. *fractional ideal class*) is an equivalence class under this relation. If A is a fractional ideal, we write $\langle A \rangle$ for its fractional ideal class.

Remark 2.2*.* Artin only defines similarity for ideals in *imaginary* quadratic integer rings: he says that A is similar to B if there exists $z \in \mathbb{C}^{\times}$ such that $zA = B$. If $\alpha \in A$ is nonzero and $\beta = z\alpha \in B$, then $z = \beta/\alpha$ is necessarily in $\mathbf{Q}(\delta)^{\times}$. Hence his definition is equivalent to the one given above, except our definition also works for fractional ideals and for real quadratic fields.

Proposition 2.3. Let R be the quadratic integer ring inside $Q(\delta)$, let I be the group *of fractional ideals in* Q(δ)*, and let* P ⊂ I *be the subgroup of principal fractional ideals. For* $A \in \mathcal{I}$ *the coset AP is equal to the fractional ideal class* $\langle A \rangle$ *. Therefore the class group* $Cl(Q(\delta))$ *is equal to the set of fractional ideal classes, and we have* $\langle A \rangle \langle B \rangle = \langle AB \rangle$ *for* $A, B \in \mathcal{I}$ *.*

Proof. We have $B \in \langle A \rangle$ if and only if there exists $z \in \mathbf{Q}(\delta)^{\times}$ such that $B = zA$. But $zA = (z)A = A(z) \in A\mathcal{P}$, so $B \in A\mathcal{P}$. Conversely, if $B = A(z) \in A\mathcal{P}$ then $B = zA \in \langle A \rangle$. $B = zA \in \langle A \rangle$.

Exercise 2.4. Prove that $\langle A \rangle^{-1} = \langle \overline{A} \rangle$ for a fractional ideal A .

The next lemma clarifies that there is essentially no difference between ideal classes and fractional ideal classes. Its proof is immediate.

Lemma 2.5. *Let* R *be the quadratic integer ring inside* $Q(\delta)$ *.*

- (1) *If* A, B ⊂ R *are integral ideals, then* A *and* B *are similar as integral ideals if and only if they are similar as fractional ideals.*
- (2) *Every fractional ideal class contains an integral ideal.*
- (3) *The set of fractional ideal classes is in bijection with the set of (integral) ideal classes.*

Therefore we can think of $Cl(Q(\delta))$ as the set of integral ideal classes if we like, as Artin does.