
FRACTIONAL IDEALS

1. DEFINITION OF FRACTIONAL IDEALS

Let α be a nonzero element of the quadratic integer ring R inside a quadratic field
Q(δ). The reciprocal α−1 = α/N(α) of α is contained in Q(δ), but in general it will
no longer be contained in R. Nonetheless, it is very convenient to have the ability to
divide two elements of R.

We have seen that in many ways, ideals in R behave better than the elements of
R. However, most ideals of R do not have a multiplicative inverses, just like most
elements of R do not. Fractional ideals are a generalization of ordinary ideals which
do admit inverses. A fractional ideal is to an ordinary ideal as Q is to Z.

Definition 1.1. Let R be the quadratic integer ring inside Q(δ). A fractional ideal of
R is a nonzero subgroup A ⊂ Q(δ) such that:

(1) [Ideal] βA ⊂ A for all β ∈ R, and
(2) [Clearing denominators] there exists β ∈ R \ {0} such that βA ⊂ R.

We will sometimes call ordinary ideals of R integral ideals in order to differentiate
them from fractional ideals.

Remark. (1) A fractional ideal A which is contained in R is the same as an inte-
gral ideal of R.

(2) If A is a fractional ideal of R and β ∈ R is a nonzero element such that
B = βA ⊂ R, then B is an integral ideal of R. Hence any fractional ideal has
the form A = αB for an integral ideal B ⊂ R and a nonzero element α = β−1

of Q(δ).
(3) With the notation in (2), if βA ⊂ R then ββA ⊂ R as well. But ββ is the

ordinary nonzero integer n = N(β) ∈ Z, so we have nA ⊂ R. Therefore
we can replace condition (2) in Definition 1.1 with the equivalent condition
“there exists a nonzero integer n such that nA ⊂ R.” Hence any fractional
ideal has the form A = n−1B for n ∈ Z \ {0} and A ⊂ R an integral ideal.

(4) If Q(δ) is an imaginary quadratic field, then every ideal B of R is a lattice in
C. Since any fractional ideal has the form A = n−1B for an integral ideal B,
this is also a lattice in C, so fractional ideals are lattices as well.

Example 1.2. Let R = Z. This is more of an analogy than an example since we have
not defined fractional ideals in Q, but the definition is the same as Definition 1.1. A
fractional ideal has the from rA for r ∈ Q× and A ⊂ Z a nonzero ideal. Since any
ideal is principal, we have A = (n) for n ∈ Z \ {0}, and hence rA = r(n) = (rn)Z.
Since rn is an arbitrary element of Q×, we have

{

fractional ideals in Q
}

=
{

rZ : r ∈ Q×
}

.

See Figure 1.
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FIGURE 1. The fractional ideal 3

2
Z in Q.

Example 1.3. Now let R = Z[i], the Gauss integers. This is a PID, so as in Ex-
ample 1.2, any fractional ideal has the form α(β) = (αβ)Z[i] for α ∈ Q(i)× and
β ∈ Z[i] \ {0}. Therefore

{

fractional ideals in Q(i)
}

=
{

(a+ bi)Z[i] : a+ bi ∈ Q(i)×
}

.

See Figure 2.

0

1

2
+

1

2
i

FIGURE 2. The fractional ideal (1
2
+ 1

2
i)Z[i] in Q(i). This fractional ideal

happens to contain Z[i], but this is a coincidence; see Figure 1.

Example 1.4. Let δ =
√
−5 and R = Z[δ]. Let A ⊂ C be the lattice 〈1, 1

2
(1+δ)〉. Then

A is a fractional ideal in Q(δ), since 2A = 〈2, 1 + δ〉 = (2, 1 + δ) is an ideal in R. See
Figure 3.

Example 1.5. The full additive group Q(δ) is not a fractional ideal. It satisfies condi-
tion (1) of Definition 1.1, but it does not satisfy condition (2): there does not a exist
a single element β ∈ R \ {0} such that βQ(δ) ⊂ R, for the same reason that there
does not exist a single n ∈ Z \ {0} such that nQ ⊂ Z.

Most of the constructions we made for integral ideals work equally well for frac-
tional ideals.
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FIGURE 3. The fractional ideal 〈1, 1
2
(1 + δ)〉 in Q(

√
−5).

Definition 1.6. Let R be the quadratic integer ring inside Q(δ) and let α1, . . . , αn ∈
Q(δ), not all equal to zero. The fractional ideal generated by α1, . . . , αn is

(α1, . . . , αn) :=
{

β1α1 + · · ·+ βnαn : β1, . . . , βn ∈ R
}

.

A fractional ideal of the form (α) for α ∈ Q(δ)× is called principal.

It is clear that if α1, . . . , αn ∈ Q(δ)× are not all zero then (α1, . . . , αn) is a subgroup
of Q(δ) which is closed under multiplication by R. There exists an integer m ∈ Z\{0}
such that mαi ∈ R for each i: indeed, αi = ai + biδ for ai, bi ∈ Q; just choose m to
clear the denominators of all of the ai, bi. Then m(α1, . . . , αn) = (mα1, . . . ,mαn) is an
integral ideal.

Any fractional ideal A ⊂ Q(δ) has a lattice basis {α, β}; then clearly A = (α, β).
(Compare with the proof of the Main Lemma, 13.4.8 in Artin.) In other words, any
fractional ideal can be generated by two elements.

Definition 1.7. Let A,B ⊂ Q(δ) be two fractional ideals. The product fractional ideal
is

AB =
{

α1β1 + · · ·+ αnβn : n ≥ 0, αi ∈ A, βi ∈ B
}

.

If A,B ⊂ R are integral ideals then AB is just the product ideal. As with ordi-
nary ideals, multiplication is associative and commutative: AB = BA and (AB)C =
A(BC) for fractional ideals A,B,C ⊂ Q(δ). Moreover, one can calculate the product
on generators: if A = (α1, α2) and B = (β1, β2) then

AB = (α1β1, α1β2, α2β1, α2β2).
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Written this way, it is clear that AB is a fractional ideal. Note also that if A = (α)
then

AB = αB = {αβ : β ∈ B}.
Now we come to the main result about fractional ideals, which says that an integral

ideal has a multiplicative inverse which is a fractional ideal.

Proposition 1.8. Let R be the quadratic integer ring inside Q(δ). The set of all frac-
tional ideals in Q(δ) is an abelian group under multiplication of fractional ideals, with
unit element R.

Proof. As mentioned above, multiplication is associative and commutative, so we only
need to show that inverses exist. Let A be a fractional ideal, and choose n ∈ Z \ {0}
such that nA = B ⊂ R is an integral ideal. Then BB = (m) for some m ∈ Z \ {0},
and we have

A

(

n

m
B

)

= (nA)

(

1

m
B

)

= B

(

1

m
B

)

=
1

m
(BB) =

1

m
(m) = (1).

Hence n
m
B = A−1. �

As an abstract group, the group of fractional ideals in Q(δ) is not very interesting,
as we will see in a moment. On the other hand, as the next example shows, neither
is the multiplicative group Q>0.

Recall that the direct sum of an infinite family G1, G2, . . . of abelian groups is de-
fined as

∞
⊕

i=1

Gi =
{

(x1, x2, . . .) : xi ∈ Gi, only finitely many xi are nonzero
}

.

The group law is just componentwise addition, and the additive identity is (0, 0, . . .).
If G1 = G2 = · · · = Z then every element of

⊕

∞

i=1
Z can be written uniquely as

a1e1 + · · ·+ anen

for some n ≥ 0 and a1, . . . , an ∈ Z, where ei = (0, . . . , 0, 1, 0, . . .) is the “ith unit coor-
dinate vector.” We call

⊕

∞

i=1
Z the free abelian group on countably many generators.

Example 1.9. Define ϕ :
⊕

p prime Z → Q>0 by

ϕ(a2, a3, a5, . . .) = 2a23a35a5 · · · .
Since only finitely many of the ai are nonzero, this is a finite product. Clearly ϕ(a +
b) = ϕ(a)ϕ(b), so ϕ is a group homomorphism. Suppose that ϕ(a2, a3, a5, . . .) = 1.
Then

2a23a35a5 · · · = 1.

Moving the terms with negative exponent to the other side of this equation gives two
different prime factorizations of the same integer, unless all of the ai = 0. Hence ϕ is
injective, by uniqueness of prime factorizations. Since any fraction can be written in
the form

r =
2a23a35a5 · · ·
2b23b35b5 · · ·
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by factoring the numerator and the denominator, we have r = ϕ(a2 − b2, a3 − b3, . . .),
so ϕ is surjective and hence an isomorphism. We have shown that Q>0 is isomorphic
to the free abelian group on countably many generators.

The ideal-theoretic version of Example 1.9 essentially says that unique factoriza-
tion extends from ideals to fractional ideals.

Proposition 1.10. Let R be the quadratic integer ring inside Q(δ), let Π be the set of
all nonzero prime ideals in R, and let I be the group of fractional ideals in Q(δ). Define
ϕ :

⊕

P∈Π
Z → I by

ϕ(. . . , aP , . . .) =
∏

P∈Π

P aP .

Then ϕ is an isomorphism of abelian groups.
In particular, for every fractional ideal I there are distinct prime ideals P1, . . . , Pn ⊂ R

and a1, . . . , an ∈ Z such that I = P e1
1 · · ·P en

n , and this expression is unique up to
reordering the factors.

Proof. The proof is almost identical to Example 1.9. It is clear that ϕ is a homo-
morphism. If ϕ(. . . , aP , . . .) = R then we have an expression of the form

∏

P ai
i = R;

moving the terms with negative exponents to the right hand side of the equation gives
two different factorizations of the same (integral) ideal, which by unique factoriza-
tion of ideals is a contradiction unless all of the ai = 0. For surjectivity, let A ⊂ Q(δ)
be a fractional ideal, and let m ∈ Z \ {0} be an integer such that mA = B is an
integral ideal. Let (m) = · · ·P aP · · · and B = · · ·P bP · · · be the prime factorizations
of the (integral) ideals (m) and B. Then

A = (m)−1B = · · ·P bP−aP · · · = ϕ(. . . , bP − aP , . . .).

Hence ϕ is an isomorphism, so fractional ideals have unique factorization. �

2. FRACTIONAL IDEALS AND IDEAL CLASSES

Now we use the group structure on the set of fractional ideals in Q(δ) to define the
class group, and we discuss the relation with similarity classes.

Definition 2.1. Let R be the quadratic integer ring inside Q(δ), let I be the group of
fractional ideals in Q(δ), and let P ⊂ I be the subgroup of principal fractional ideals.
The class group of Q(δ) is the quotient

Cl(Q(δ)) := I/P .

Since (α)(β)−1 = (αβ−1), it is clear that P is in fact a subgroup of I. Hence
Cl(Q(δ)) is an abelian group, which we will soon see is finite.

Recall that two ideals A,B ⊂ R (resp. fractional ideals A,B ⊂ Q(δ)) are similar
provided that there exists z ∈ Q(δ)× such that zA = B. Similarity is an equivalence
relation on the set of all ideals (resp. fractional ideals). An ideal class (resp. fractional
ideal class) is an equivalence class under this relation. If A is a fractional ideal, we
write 〈A〉 for its fractional ideal class.
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Remark 2.2. Artin only defines similarity for ideals in imaginary quadratic integer
rings: he says that A is similar to B if there exists z ∈ C× such that zA = B. If
α ∈ A is nonzero and β = zα ∈ B, then z = β/α is necessarily in Q(δ)×. Hence his
definition is equivalent to the one given above, except our definition also works for
fractional ideals and for real quadratic fields.

Proposition 2.3. Let R be the quadratic integer ring inside Q(δ), let I be the group
of fractional ideals in Q(δ), and let P ⊂ I be the subgroup of principal fractional
ideals. For A ∈ I the coset AP is equal to the fractional ideal class 〈A〉. Therefore
the class group Cl(Q(δ)) is equal to the set of fractional ideal classes, and we have
〈A〉〈B〉 = 〈AB〉 for A,B ∈ I.

Proof. We have B ∈ 〈A〉 if and only if there exists z ∈ Q(δ)× such that B = zA.
But zA = (z)A = A(z) ∈ AP, so B ∈ AP. Conversely, if B = A(z) ∈ AP then
B = zA ∈ 〈A〉. �

Exercise 2.4. Prove that 〈A〉−1 = 〈A〉 for a fractional ideal A.

The next lemma clarifies that there is essentially no difference between ideal
classes and fractional ideal classes. Its proof is immediate.

Lemma 2.5. Let R be the quadratic integer ring inside Q(δ).

(1) If A,B ⊂ R are integral ideals, then A and B are similar as integral ideals if
and only if they are similar as fractional ideals.

(2) Every fractional ideal class contains an integral ideal.
(3) The set of fractional ideal classes is in bijection with the set of (integral) ideal

classes.

Therefore we can think of Cl(Q(δ)) as the set of integral ideal classes if we like, as
Artin does.
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