

Math 4803/8803 Homework 4
Due at the beginning of class on Wednesday, September 16.

Exercises in Samuel:
Chapter II #4.

Exercises not from the text:

- (1) Let A, B, C be rings, with A a subring of B and B a subring of C .
 - (a) Suppose that B is a finitely generated A -module and C is a finitely generated B -module. Prove that C is a finitely generated A -module.
 - (b) Suppose that B is a finitely generated A -algebra and C is a finitely generated B -algebra. Prove that C is a finitely generated A -algebra.
 - (c) Find an example of a ring which is a finitely generated \mathbb{Q} -algebra but not a finitely generated \mathbb{Q} -module.
- (2) Let $\zeta = e^{2\pi i/5}$. Use the proof of Theorem II.1(c \implies a) to find an explicit equation of integral dependence for $\zeta + \zeta^2$ over \mathbb{Z} .
- (3) Let A be a subring of B , with B integral over A . Prove that $B^\times \cap A = A^\times$. Show this is false in general without the integrality hypothesis.
- (4) Let A be a subring of B , such that the set $B \setminus A$ is closed under multiplication. Show that A is integrally closed in B .
- (5) Let A be a ring, let G be a finite group of automorphisms¹ of A , and let $A^G = \{x \in A : \forall \sigma \in G, \sigma(x) = x\}$. Prove that A is integral over A^G . [Hint: if A is a field, this is a basic fact from Galois theory — how is it proved in that context?]

¹An *automorphism* of A is an isomorphism from A to itself. The set of all automorphisms forms a group under composition.