

Math 4803/8803 Homework 6

Due at the beginning of class on Wednesday, September 30.

(1) Let K be a perfect field and let L/K and F/L be finite field extensions (so L and F are also perfect fields). Prove that

$$\mathrm{Tr}_{F/K} = \mathrm{Tr}_{L/K} \circ \mathrm{Tr}_{F/L} \quad \text{and} \quad \mathrm{N}_{F/K} = \mathrm{N}_{L/K} \circ \mathrm{N}_{F/L}.$$

[In class we proved that the trace and norm of an element x can be calculated in terms of the images of x under the distinct homomorphisms into an algebraically closed field extension C/K . Use that result and its proof, and be careful about what field is the ground field for which homomorphism!]

(2) Let A be a subring of a ring C such that $C \cong A^n$ as A -modules, and let $B \subset C$ be a subring containing A , so $A \subset B \subset C$. Suppose that A is a principal ideal domain.

(a) Show that B is a finitely generated free A -module.

(b) Suppose that B also has rank n . Let $x_1, \dots, x_n \in B$ and $y_1, \dots, y_n \in C$ be bases. Prove that

$$D(x_1, \dots, x_n) = D(y_1, \dots, y_n) \cdot d^2$$

for some $d \in A$.

(c) Conclude that if $D(x_1, \dots, x_n)$ is nonzero and squarefree then $B = C$.

(3) Let $f(X) = X^3 + 2X + 1 \in \mathbf{Q}[X]$, let $x \in \mathbf{C}$ be a root of f , and let $K = \mathbf{Q}(x)$.

(a) Prove that f is irreducible over \mathbf{Q} .

(b) Let $B = \mathbf{Z}[x]$. Show that B is a free \mathbf{Z} -module with basis $1, x, x^2$, and calculate $D(1, x, x^2)$.

(c) Use (b) and problem (2) to prove that B is the ring of integers of K .

(d) Regarding $1, x, x^2$ as a basis of K/\mathbf{Q} , compute the dual basis of K with respect to the trace pairing. (This is the inverse image of the dual basis of K^* under the isomorphism $K \xrightarrow{\sim} K^*$ given by the trace pairing.)

If you're not yet convinced that discriminants are useful, try proving directly that B is integrally closed!

(4) Let d, d' be squarefree integers, let $K = \mathbf{Q}(\sqrt{d}, \sqrt{d'})$, and let \mathcal{O}_K be the ring of integers of K .

(a) Let $a \in \mathbf{Z}$ be a generator of $\mathcal{D}_{\mathcal{O}_K}/\mathbf{Z}$, and suppose that p is a prime factor of a . Prove that $p \mid 2dd'$. [First compute the discriminant of $\mathbf{Z}[\sqrt{d}, \sqrt{d'}]$.]

(b) Let p, q, ℓ be distinct primes, with $\ell \neq 2$. Use (a) to prove that ℓ is not a square in $\mathbf{Q}(\sqrt{p}, \sqrt{q})$.

(c) **(Optional)** Prove a statement like (a) for three squarefree integers d, d', d'' . Can you generalize your argument to arbitrarily many?

After we've developed some more technology, statements like this (and more general ones) will become almost automatic.