

Math 4803/8803 Homework 9

Due at the beginning of class on Wednesday, October 28.

1. Prove that a Dedekind domain A is a principal ideal domain if and only if it is a unique factorization domain. [To prove \Leftarrow , you actually only need to assume that any nonzero element a is a product of prime elements.]
2. Let A be a Dedekind domain with fraction field K and let $\mathfrak{a}, \mathfrak{b} \subset K$ be fractional ideals, with duals $\mathfrak{a}^*, \mathfrak{b}^*$. Prove, without doing any computations, that $(\mathfrak{a}\mathfrak{b})^* = \mathfrak{a}^*\mathfrak{b}^*$ and that $\mathfrak{a}^{**} = \mathfrak{a}$.
3. Let K be a number field, let $\mathfrak{p} \subset \mathcal{O}_K$ be a nonzero prime ideal, and let p be the prime number such that $p\mathbf{Z} = \mathfrak{p} \cap \mathbf{Z}$. Prove that the field $k = \mathcal{O}_K/\mathfrak{p}$ is a finite extension field of \mathbf{F}_p , and that

$$N(\mathfrak{p}) = p^{[k : \mathbf{F}_p]}.$$

4. Let $K = \mathbf{Q}(\sqrt{d})$ be a quadratic number field. Let $\tau \in \text{Gal}(K/\mathbf{Q})$ be the automorphism sending \sqrt{d} to $-\sqrt{d}$, for $x \in K$ set $\bar{x} := \tau(x)$, and for an ideal $\mathfrak{a} \subset \mathcal{O}_K$ set $\bar{\mathfrak{a}} = \tau(\mathfrak{a})$. It is a fact that $\mathfrak{a}\bar{\mathfrak{a}} = (n)$ for a unique positive integer n . Prove that $n = N(\mathfrak{a})$.
5. Let A be any ring.
 - a) Let M be an A -module, let \mathfrak{a} be an ideal contained in $\text{Ann}(M)$, let $\bar{A} = A/\mathfrak{a}$, and let $\pi: A \rightarrow \bar{A}$ be the quotient homomorphism. Prove that M is an \bar{A} -module via the rule $\pi(a)m := a m$.
 - b) Let M be an A -module and let $\mathfrak{a} \subset A$ be an ideal. Show that \mathfrak{a} is contained in $\text{Ann}(M/\mathfrak{a}M)$. In particular, if \mathfrak{a} is a maximal ideal then $M/\mathfrak{a}M$ is a vector space over A/\mathfrak{a} .
 - c) Let A be an integral domain, let $\mathfrak{p} \subset A$ be a maximal ideal, and suppose that $\dim_{A/\mathfrak{p}}(\mathfrak{p}/\mathfrak{p}^2) \geq 2$.¹ Prove that A is not Dedekind.
 - d) Use (c) to give another proof that $K[X^2, X^3]$ is not Dedekind.
 - e) Now let A be a Dedekind domain, let $\mathfrak{p} \subset A$ be a nonzero prime ideal, and suppose that $[\mathfrak{p}]^2 = [A]$ in $C(A)$. Prove that \mathfrak{p} can be generated by two elements.²

¹The Zariski tangent space at the prime ideal \mathfrak{p} is defined to be the vector space $\mathfrak{p}/\mathfrak{p}^2$. In geometric language, the condition $\dim_{A/\mathfrak{p}}(\mathfrak{p}/\mathfrak{p}^2) \geq 2$ says that A is not nonsingular of dimension one at \mathfrak{p} .

²In fact, any ideal of a Dedekind domain can be generated by two elements, but this requires more commutative algebra background to prove. See Exercise 9.7 in Atiyah–MacDonald’s *Commutative Algebra*.