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The purpose of this note is to prove the estimate in Theorem 1. I’m not sure to whom
to attribute this fact. Spencer Tolbert showed me how to do part of the proof, and the rest
came from Matt Baker’s algebraic number theory course notes. The proof uses nothing
beyond single-variable calculus, yet it is quite tricky without being particularly messy.

Theorem 1. For all x , y ∈ R, if |x | ≥ 1 then
�

sin(2y)− (x + x−1) sin(y)
�2
≤ x2 + 6.

Remark 2. This is an extremely good estimate. For instance, taking x = 100 and y =
−1.59078, we have

x2 + 6−
�

sin(2y)− (x + x−1) sin(y)
�2
∼ 0.0015.

In fact, this difference can be made arbitrarily small as x →∞; see Remark 3 below. In
particular, x2+6 is asymptotic to the maximum value of [sin(2y)− (x + x−1) sin(y)]2 in
the sense that the difference is actually ox(1).

We will use the following notation:

α= α(x) :=x + x−1

f (x , y) := sin(2y)−α sin(y)

= sin(y)
�

2cos(y)−α
�

.

The last equality comes from the double angle formula sin(2y) = 2 sin(y) cos(y). We
need to show f (x , y)2 ≤ x2 + 6. We have

(2.1) f (x , y)2 = sin2(y)
�

2 cos(y)−α
�2
=
�

1− cos2(y)
� �

2cos(y)−α
�2

.

Since cos(y + π) = − cos(y) and α(−x) = −α(x), we have f (−x , y + π)2 = f (x , y)2;
thus we may assume x ≥ 1. Note that x + x−1 is increasing for x ≥ 1 (its derivative is
1− x−2 ≥ 0), so since 1+ 1−1 = 2, we have α≥ 2.

For fixed x , the function y 7→ f (x , y) is smooth and periodic, so it is bounded; hence
it achieves a global maximum at a critical point. We calculate

∂

∂ y
f (x , y) = 2 cos(2y)−α cos(y)

= 4 cos2(y)−α cos(y)− 2,

using the double angle formula cos(2y) = 2 cos2(y) − 1. Let y0 be a critical point of
f (x , · ) and let β := cos(y0), so

(2.2) 4β2 −αβ − 2= 0.
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Writing p(z) = 4z2−αz−2, we have p(z)> 0 when |z| is large, and p(0) = −2, so p has
two roots z1 < z2. Since

p(1) = 4−α− 2≤ 0 and p
�

−
1

2x

�

=
1
x2
+

x + x−1

2x
− 2=

3
2
(x−2 − 1)≤ 0,

we have z1 ≤ −1/2x and z2 ≥ 1. Now, β = cos(y0) is a root of p, so β = z1 or β = z2;
but β ∈ [−1, 1], so if β = z2 then β = 1, which implies f (x , y0)2 = 0 by (2.1), which
is impossible because 0 is clearly not a maximum of f (x , · )2. Thus β = z1 ≤ −1/2x , so
x−1 ≤ −2β and

(2.3) x−2 ≤ 4β2.

Substituting β for cos(y0) into (2.1) and using (2.2) gives

f (x , y0)
2 = (1− β2) (2β −α)2

= α2 + 4β2 − 4αβ −α2β2 − 4β4 + 4αβ3

= (α2 − 4β4 − 4β2 + 4) + (αβ + 2)(4β2 −αβ − 2)

= α2 − 4β4 − 4β2 + 4.

(2.4)

Using α2 = x2 + x−2 + 2, we have

(2.5) f (x , y2
0 ) = x2 + 6+ (x−2 − 4β2 − 4β4)≤ x2 + 6,

where the final inequality holds by (2.3). This completes the proof.

Remark 3. Let a, b, c > 0 satisfy the Pythagorean equation a2 + b2 = c2. Then
a ≤ c

=⇒ 2a ≤ c + a
=⇒ 2ab2 ≤ (c + a)b2

=⇒ 2a(c2 − a2) ≤ (c + a)b2

=⇒ 2a(c − a)(c + a) ≤ (c + a)b2

=⇒ 2a(c − a) ≤ b2

=⇒ a(c − a) ≤
b2

2
.

Applying this observation to a = α, b =
p

32, and c =
p
α2 + 32 gives

|αβ |= −αβ =
1
8
α
�
p

α2 + 32−α
�

=
1
8

a(c − a)≤
1
8
·

b2

2
= 2.

It follows that β → 0 as α → ∞, or as x → ∞. Referring to (2.5), we see that the
difference between the maximum value of f (x , y) and x2 + 6 tends to zero as x →∞,
which explains Remark 2.


