
DISCRIMINANTS IN TOWERS

JOSEPH RABINOFF

Let A be a Dedekind domain with fraction field F , let K/F be a finite separable ex-
tension field, and let B be the integral closure of A in K . In this note, we will define
the discriminant ideal DB/A and the relative ideal norm NB/A(b). The goal is to prove the
formula

DC/A = NB/A

�

DC/B

�

· D[L:K]
B/A ,

where C is the integral closure of B in a finite separable extension field L/K . See Theo-
rem 6.1.

The main tool we will use is localizations, and in some sense the main purpose of
this note is to demonstrate the utility of localizations in algebraic number theory via
the discriminants in towers formula. Our treatment is self-contained in that it only uses
results from Samuel’s Algebraic Theory of Numbers, cited as [Samuel].

Remark. All finite extensions of a perfect field are separable, so one can replace “Let
K/F be a separable extension” by “suppose F is perfect” here and throughout. Note that
Samuel generally assumes the base has characteristic zero when it suffices to assume that
an extension is separable. We will use the more general fact, while quoting [Samuel] for
the proof.

1. Notation and review. Here we fix some notations and recall some facts proved in
[Samuel]. Let K/F be a finite field extension of degree n, and let x1, . . . , xn ∈ K . We
define

D(x1, . . . , xn) = det
�

TrK/F(x i x j)
�n

i, j=1
.

We write DK/F instead of D if the field extension is not clear from context. If K/F is
separable and x1, . . . , xn are an F -basis for K , then D(x1, . . . , xn) 6= 0 by [Samuel, Propo-
sition 2.7.3]. If M is an n× n matrix with coefficients in F then

(1.1) D(M x1, . . . , M xn) = det(M)2 · D(x1, . . . , xn)

by [Samuel, Proposition 2.7.1]. If M is a permutation matrix then det(M) = ±1, so
D(x1, . . . , xn) is independent of the ordering of its arguments.

Let A be an integrally closed domain with fraction field F , let K/F be a finite extension
of degree n, and let B ⊂ K be a subring which is integral over A. Then for x1, . . . , xn ∈ B,
we have TrK/F(x i x j) ∈ A, so D(x1, . . . , xn) ∈ A. If B is a free A-module of rank n, with
basis x1, . . . , xn, the discriminant ideal is the principal ideal

(1.2) DB/A := D(x1, . . . , xn)A.

This is independent of the choice of basis by (1.1), as if M is a change of basis matrix for
B, then det(M) ∈ A×. If K/F is separable then DB/A is nonzero.
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Now we specialize to the case of Dedekind domains. See [Samuel, Theorems 2.7.1
and 3.4.1] for proofs of the following facts.

Proposition 1.3. Let A be a Dedekind domain with fraction field F, let K/F be a finite
separable extension of degree n, and let B be the integral closure of A in K. Then:

(1) B is a Dedekind domain with fraction field K.
(2) B is an A-submodule of a free A-module of rank n.
(3) B is a finitely generated A-module.
(4) If q ⊂ B is a maximal ideal then q∩ A is a maximal ideal.
(5) If A is a principal ideal domain, then B is a free A-module of rank n, and any A-basis

for B is an F-basis for K.

Let A be a Dedekind domain with field of fractions F . For a nonzero fractional ideal
a ⊂ F , we have a unique factorization

a=
∏

p

pvp(a),

where the product is taken over all nonzero prime ideals of A. Of course, all but finitely
many of the integers vp(a) are zero. For fixed p we have vp(ab) = vp(a) + vp(b), where
a,b ⊂ F are nonzero fractional ideals. For x ∈ F× we write vp(x) = vp((x)).

Remark 1.4. We will follow Samuel’s convention that a field is a Dedekind domain. This
has the advantage that any localization of a Dedekind domain is Dedekind (see Propo-
sition 2.1 below), but the disadvantage that one has to distinguish between “maximal
ideal” and “nonzero prime ideal” throughout.

2. Localizations. For our purposes, the main advantage of localizations is that they pro-
duce principal ideal domains from Dedekind domains. This allows us to use the classifica-
tion of modules over a PID, and facilitates our constructions and proofs. The localization
is well-behaved, in that it respects most ring-theoretic constructions, and one can recover
information about a ring from its localizations.

Let A be an integral domain with fraction field F , and let S ⊂ A\{0} be a multiplicatively
closed subset. Recall that the localization of A at S is

S−1A :=
§

a
s
∈ F | a ∈ A, s ∈ S

ª

.

This is a subring of F containing A, and the fraction field of S−1A is F . For a prime ideal
p ⊂ A, the complement A\ p is multiplicatively closed, and we write

Ap := (A\ p)−1A=
§

a
s
∈ F | a, s ∈ A, s /∈ p

ª

.

We call Ap the localization of A at p. If A is a subring of an integral domain B and p ⊂ A
is a prime ideal, then A \ p is also a multiplicatively closed subset of B, and we write
Bp = (A\ p)−1B. Note that Bp in general is not the localization of B at a prime ideal of B.

Let A be an integral domain, let S ⊂ A\ {0} be a multiplicatively closed subset, and let
A′ = S−1A. For an ideal a ⊂ A, we define its extension aA′ to be the ideal of A′ generated
by a. The contraction of an ideal a′ ⊂ A′ is the ideal a′ ∩ A of A. An ideal of A of the form
a′ ∩ A is called contracted.
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We have the following ideal correspondence for localizations from [Samuel, Proposi-
tion 5.1.1]. Note the similarity with the ideal correspondence for quotients.

Proposition 2.1. Let A be an integral domain, let S ⊂ A \ {0} be a multiplicatively closed
subset, and let A′ = S−1A.

(1) For every ideal a′ ⊂ A′ we have (a′ ∩ A)A′ = a′.
(2) Extension and contraction give rise to an inclusion-preserving bijection

�

contracted ideals of A
	

←→
�

ideals of A′
	

.

(3) The bijection of (2) restricts to a bijection
�

prime ideals p ⊂ A such that p∩ S = ;
	

←→
�

prime ideals of A′
	

.

In other words, a prime ideal p ⊂ A is contracted if and only if p∩ S = ;.

Exercise 2.2. Let A be an integral domain, let a ⊂ A be an ideal, let S ⊂ A \ {0} be a
multiplicatively closed subset, and let A′ = S−1A. Prove that:

(1) aA′ =
§

a
s
| a ∈ a, s ∈ S

ª

.

(2) If p ⊂ A is prime with p ∩ S = ;, a ∈ A and s ∈ S, then a/s ∈ pA′ if and only if
a ∈ p. [Careful: remember that there are multiple ways of expressing an element
of S−1A as a fraction.]

(3) The contraction of a nonzero ideal is nonzero.
(4) Extension is compatible with products, in that for any two ideals a,b ⊂ A,

(aA′)(bA′) = (ab)A′.

(5) aA′ = A′ if and only if S ∩ a 6= ;.
(6) A= S−1A if and only if S ⊂ A×.

Exercise 2.3. Let A be an integral domain, let a ( A be a proper ideal, and let S = 1+ a.
Verify that S is a multiplicatively closed subset, and show that for a prime ideal p ⊂ A, we
have p∩ S 6= ; if and only if p+ a= A.

3. Localizations of Dedekind domains. The localization is an extremely well-behaved
construction, in that it is compatible with most of the ring-theoretic constructions we
have already encountered. For instance, we have [Samuel, Proposition 5.1.2 and 5.1.3].

Proposition 3.1. Let A be a Dedekind domain with fraction field F, let S ⊂ A \ {0} be
a multiplicatively closed subset, let K/F be a finite separable extension, and let B be the
integral closure of A in K. Then

(1) S−1B is the integral closure of S−1A in K, and
(2) S−1B is a Dedekind domain.

By Exercise 2.2, nonzero prime ideals in S−1A correspond to nonzero prime ideals in
A which are disjoint from S. The following lemma relates prime factorizations in A to
prime factorizations in S−1A.

Lemma 3.2. Let A be a Dedekind domain, let S ⊂ A\{0} be a multiplicatively closed subset,
and let A′ := S−1A.
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(1) If a ⊂ A is a nonzero ideal then

a=
∏

p

pvp(a) =⇒ aA′ =
∏

p∩S=;

(pA′)vp(a).

(2) If a′ ⊂ A′ is a nonzero ideal then

a′ =
∏

p∩S=;

(pA′)vpA′ (a
′) =⇒ a′ ∩ A=

∏

p∩S=;

pvpA′ (a
′).

(3) The nonzero contracted ideals in A are those ideals whose prime factors are disjoint
from S.

In other words, to find the prime factorization of aA′, one simply deletes the prime
factors which do not give rise to prime ideals of A′. By Proposition 2.1(3), every nonzero
prime ideal of A′ has the form pA′ for a nonzero prime ideal p ⊂ A, and Lemma 3.2 implies
the compatibility

(3.3) vpA′(aA′) = vp(a).

Proof. By Exercise 2.2(4), extension is compatible with ideal products, so

aA′ =
∏

p

(pA′)vp(a) =
∏

p∩S=;

(pA′)vp(a)

because pA′ = A′ when p∩S 6= ;. This gives (1). Now we prove (2). By Proposition 2.1(1),
the ideal a := a′ ∩ A extends to a′, and by (1), the ideal b :=

∏

p∩S=; p
vpA′ (a

′) extends to a′

as well. Clearly
b ⊂ (bA′)∩ A= a′ ∩ A= a,

so a | b. This implies vp(a) ≤ vp(b) for all primes p ⊂ A. By construction and (3.3), if
p ∩ S = ; then vp(b) = vpA′(a′) = vp(a), and since vp(b) = 0 for p ∩ S 6= ;, for such p we
have

0≤ vp(a)≤ vp(b) = 0.

This means vp(a) = vp(b) for all p, so a = b. This proves (2); part (3) follows from (1)
and (2). �

We will produce principal ideal domains from Dedekind domains in the following way.

Definition 3.4. A nonzero ring is called semi-local if it has finitely many maximal ideals.
A Dedekind domain with exactly one nonzero prime ideal is a called a discrete valuation
ring, or DVR.

Lemma 3.5. A semi-local Dedekind domain is a PID. In particular, a DVR is a PID.

Proof. Let A be a semi-local Dedekind domain with nonzero prime ideals p1, . . . ,pr . These
are distinct maximal ideals, so they are pairwise coprime: pi + p j = (1) for i 6= j. More-
over, since p2

1 does not share any common factors with p j for j ≥ 2, we have likewise
p2

1 + p j = gcd(p2
1,p j) = (1). Applying the Chinese remainder theorem gives a surjection

c : A�
A
p2

1

×
A
p2
× · · · ×

A
pr
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with kernel p2
1p2 · · ·pr . Let x ∈ p1/p

2
1 be a nonzero element, and choose x ∈ A such that

c(x) = (x , 1, . . . , 1). Then x ∈ p1 but not p2
1, and for j ≥ 2 we have x ≡ 1 mod p j for

j ≥ 2, so x /∈ p j. In terms of ideals, this says p1 | (x) but p2
1 - (x), and p j - (x) for

j ≥ 2. Hence (x) = p1, as this is the only possible prime factorization. It follows that p1
is principal, and by the same argument, that pi is principal for all i. As any nonzero ideal
in A is a product of prime ideals, A is a principal ideal domain. �

Remark 3.6. Let A be a DVR with maximal ideal p. Then p = (p) is principal, and every
nonzero ideal of A has the form pn for some n≥ 0, since there are no other possible ideal
factorizations. Hence the ideals of A are (1), (p), (p2), (p3), · · · , (0).

Example 3.7. The ring A= C¹tº is a DVR with maximal ideal (t).

Lemma 3.8. If A is a Dedekind domain, then Ap is a DVR, and pAp is its maximal ideal.

Proof. We know that Ap is Dedekind by Proposition 3.1(2), and by Proposition 2.1(3) that
every nonzero prime ideal of Ap has the form qAp for a nonzero prime ideal q ⊂ A such
that q∩ (A\ p) = ;. But q∩ (A\ p) = ; if and only if q ⊂ p, so since p and q are maximal,
we must have p= q. �

Lemma 3.9. Let A be a discrete valuation ring with fraction field F, let K/F be a finite
separable extension, and let B be the integral closure of A in K. Then B is semi-local, hence
a PID.

Proof. Let q be a maximal ideal of B. Then q∩A is a maximal ideal by Proposition 1.3(4),
so q∩A= p, the unique maximal ideal of A. Thus p ⊂ q, so pB ⊂ q, and hence q | pB. But
pB has only finitely many prime factors. �

It follows from Lemmas 3.8 and 3.9 that if A is a Dedekind domain with fraction field
F , p ⊂ A is a nonzero prime, K/F is a finite separable extension, and B is the integral
closure of A in K , then both Ap and Bp are PIDs.

We will also use localizations to test if two ideals are equal.

Lemma 3.10. Let A be a Dedekind domain, and let a,a′ ⊂ A be nonzero ideals. Then a= a′

if and only if aAp = a′Ap for all nonzero prime ideals p ⊂ A.

Proof. If aAp = a′Ap then vp(a) = vp(a′) by (3.3). Hence a and a′ have the same prime
factorizations. �

Exercise 3.11. Let A be a Dedekind domain, let S ⊂ A\ {0} be a multiplicatively closed
subset, and let A′ = S−1A. Prove that for any two ideals a′,b′ ⊂ A′, we have

(a′ ∩ A) · (b′ ∩ A) = (a′b′)∩ A.

In other words, contraction is compatible with products in the case of localizations of
Dedekind domains.1

Exercise 3.12. Let A be a Dedekind domain, let S ⊂ A\ {0} be a multiplicatively closed
subset, and let A′ = S−1A.

1I strongly believe this to be false in general, but I cannot find a counterexample when A is an integral
domain.
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(1) Let p ⊂ A be a nonzero prime ideal such that p ∩ S = ;. Generalize [Samuel,
Proposition 5.1.5] to prove that for any n≥ 0, the natural homomorphism

A/pn −→ A′/(pA′)n

is an isomorphism.
(2) Let a ⊂ A be a nonzero contracted ideal. Prove that the natural homomorphism

A/a −→ A′/aA′

is an isomorphism.

Exercise 3.13. Let A be a Dedekind domain and let a ⊂ A be a nonzero ideal.
(1) Prove that every ideal of A/a is principal. [Localize at S = 1+a as in Exercise 2.3.

Show that a is contracted and S−1A is semi-local, then use Exercise 3.12(2).]
(2) Prove that a can be generated by two elements. [Apply (1) to the ideal a/aA of

A/aA for any nonzero element a ∈ a.]

Exercise 3.14. Let K be a number field and let A= OK . Prove that there exists f ∈ A\{0}
such that A f := {1, f , f 2, . . .}−1A is a principal ideal domain. [Choose f to kill all elements
of the class group of A.]

Exercise 3.15. Generalize Lemma 3.9 as follows. Let A be a semi-local Dedekind domain
with fraction field F , let K/F be a finite separable extension, and let B be the integral
closure of A in K . Show B is semi-local.

Exercise 3.16. Suppose that there were finitely many prime numbers. Use Exercise 3.15
to prove that Z[

p
−5] is a PID, and derive a contradiction. Thus there are infinitely many

prime numbers.2

4. The relative ideal norm. In this section we fix a Dedekind domain A with fraction
field F . Let K/F be a finite separable extension of degree n, and let B be the integral
closure of A in K . For a nonzero ideal b ⊂ B we will define its relative norm NB/A(b), which
is an ideal of A. This will generalize the (absolute) ideal norm N(b) defined when A= Z,
and it will also generalize the norm of an element NK/F(x) for x ∈ B. See Remark 4.2
and Proposition 4.4.

By Proposition 1.3, B is a Dedekind domain and a finitely generated A-module, and
for every maximal ideal q ⊂ B, the contraction p := q∩ A is a maximal ideal. Hence A/p
is a subfield of B/q. Any set of generators for B as an A-module also generates B/q as a
vector space over A/p, so the degree [B/q : A/p] is finite.

Definition 4.1. Let b =
∏

q q
vq(b) be a nonzero ideal of B. The relative ideal norm of b is

defined to be
NB/A(b) :=

∏

q

(q∩ A)[B/q : A/p] vq(b),

where p= q∩ A.

For ideals b,b′ ⊂ B, we have NB/A(bb′) = NB/A(b)NB/A(b′) since vq(bb′) = vq(b)+ vq(b′).

2Brian Conrad attributes this ridiculous proof to Larry Washington.
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Remark 4.2. Suppose that A= Z, so F = Q and K is a number field with ring of integers
B = OK . The absolute ideal norm N(b) of a nonzero ideal b ⊂ B is defined to be the (finite)
number of elements of the quotient ring, i.e. N(b) := #(B/b). We claim that

(4.3) NB/Z(b) = N(b)Z.

The absolute ideal norm is multiplicative in b by [Samuel, Proposition 3.5.2], so it suffices
to prove N(q)Z= NB/Z(q) = (q∩Z)[B/q :Z/q∩Z] for q ⊂ B prime. But it is easily verified that

N(q) = #(B/q) = p[B/q :Fp],

where q∩ Z= pZ.

The following proposition says that the relative ideal norm is compatible with the norm
of an element. It is surprising because the two kinds of norm are defined in completely
different ways: indeed, the norm of an element b is defined as the determinant of mul-
tiplication by b.

Proposition 4.4. Let b ∈ B \ {0}. Then NB/A(bB) = NK/F(b)A.

In order to prove Proposition 4.4, we first need to show that the relative ideal norm is
compatible with localizations.

Lemma 4.5. Let S be a multiplicatively closed subset of A, let A′ := S−1A, and let B′ := S−1B.
Then for every nonzero ideal b ⊂ B, we have

NB/A(b)A
′ = NB′/A′(bB′).

Proof. As norms and extensions are both multiplicative in b, we may assume b = q is
prime. Let p= q∩A, and note that p∩S = q∩S because S ⊂ A. If q∩S 6= ; then qB′ = B′,
so NB′/A′(qB′) = A′. In this case, p∩ S 6= ; as well, so pA′ = A′, and

NB/A(q)A
′ = p[B/q:A/p]A′ = (pA′)[B/q:A/p] = A′.

Now suppose q ∩ S = p ∩ S = ;. Then B/q = B′/(qB′) and A/p = A′/pA′ by [Samuel,
Proposition 5.2.5]. Moreover,

((qB′)∩ A′)∩ A= (qB′)∩ A= ((qB′)∩ B)∩ A= q∩ A= p,

so (qB′)∩ A′ = pA′ because they contract to the same ideal of A. Hence we have a com-
mutative square

A/p �
� //

∼=
��

B/q
∼=
��

A′/pA′ �
� // B′/qB′

so [B/q : A/p] = [B′/qB′ : A′/pA′]. It follows that

NB/A(q)A
′ = p[B/q : A/p]A′ = (pA′)[B

′/qB′ : A′/pA′] = NB′/A′(qB′).

�
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Proof of Proposition 4.4. By Lemma 3.10, it suffices to check that for all nonzero prime
ideals p ⊂ A, we have NB/A(bB)Ap = NK/F(b)Ap. Lemma 4.5 gives that NB/A(bB)Ap =
NBp/Ap

(bBp), so we may replace A by Ap and B by Bp to assume A is a discrete valuation
ring. Thus A and B are principal ideal domains by Lemmas 3.8 and 3.9. As ideal and
element norms are multiplicative, and since B is a unique factorization domain, it suffices
to show that NB/A(qB) = NK/F(q)A for q ∈ B a prime element. The contraction (qB) ∩ A
is the unique maximal ideal of A; let p be a generator. By the classification of finitely
generated modules over a PID, we have

(4.6) B/qB ∼= A/pe1A× · · · × A/per A

for some 1 ≤ e1 ≤ e2 ≤ · · · ≤ er , since pA is the only maximal ideal of A. But p ∈ qB, so
p annihilates B/qB, so e1 = . . . = er = 1, and B/qB ∼= (A/pA)r . This means that B/qB is
an r-dimensional A/pA-vector space, so by definition, NB/A(pB) = (pA)r = prA. On the
other hand, equation (4.6) shows that the Smith normal form for the multiplication-by-q
homomorphism mq : B→ B is the diagonal matrix

















p
. . .

p
1

...
1

















with r diagonal entries being p and the rest being 1. Hence NK/F(p) = det(mq) = pr , up
to units. �

Exercise 4.7. Let b,b′ be nonzero ideals of B, with b | b′. Show that NB/A(b) | NB/A(b′),
and that if NB/A(b) = NB/A(b′) then b= b′.

Exercise 4.8. Let b be a nonzero ideal of B.
(1) Prove that

NB/A(b) =
�

NK/F(x) | x ∈ b
�

.

[Localize at a nonzero prime ideal of A.]
(2) Prove by example that NB/A(b) is not necessarily generated by the norms of a

given set of generators for b. [Take b= B, and suppose that there are two distinct
nonzero prime ideals of B which contract to the same ideal of A.]

Exercise 4.9. Let L/K be a finite separable extension and let C be the integral closure of
B (or A) in L. Prove that for any nonzero ideal c ⊂ C , we have

NB/A

�

NC/B(c)
�

= NC/A(c).

[It is tempting to use Exercise 4.8(1), but this does not work because of Exercise 4.8(2).]

Exercise 4.10. Let a be a nonzero ideal of A. Prove that

NB/A(aB) = a[K:F].

[Localize to reduce to the case where a is principal.]
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Exercise 4.11. Suppose that K/F is Galois with Galois group G = Gal(K/F). Note that
σ(B) = B for all σ ∈ G. Prove that for a nonzero ideal b ⊂ B,

NB/A(b)B =
∏

σ∈G

σ(b).

[The left side is included in the right by Exercise 4.8. Take norms of both sides.]

Remark 4.12. Suppose that F = Q and A= Z, and that K/F is Galois with Galois group
G = Gal(K/F). By Exercise 4.11 and Remark 4.2, for any nonzero ideal b ⊂ B = OK , we
have

N(b)OK =
∏

σ∈G

σ(b),

where N(b) = #(OK/b) ∈ Z≥1 is the absolute ideal norm. This useful observation gives a
concrete formula for the inverse fractional ideal:

b−1 =
1

N(b)

∏

σ 6=1

σ(b).

The situation becomes particularly simple when K = Q(
p

d) is a quadratic extension
of Q. In this case K/Q is automatically Galois, with Gal(K/Q) = {1,τ}, where τ(

p
d) =

−
p

d. Writing b= τ(b) for a nonzero ideal b ⊂ OK , we obtain

N(b)Z= bb.

5. The discriminant. In this section we fix a Dedekind domain A with fraction field F .
Let K/F be a finite separable extension of degree n, and let B be the integral closure
of A in K . By Proposition 1.3, B is a Dedekind domain with fraction field K , and B is
an A-submodule of a free A-module of rank n. However, if A is not a principal ideal
domain then B may not itself be a free A-module, so that we cannot use (1.2) to define
the discriminant DB/A. We will use localizations in order to define the discriminant DB/A
in this case.

By Proposition 3.1(1), for any prime ideal p ⊂ A, the integral closure of Ap in K is
Bp := (A\p)−1B. Since Ap is a principal ideal domain, Bp is a free Ap-module of rank n, so
the discriminant ideal DBp/Ap

of (1.2) is a well-defined nonzero ideal of Ap. Since Ap has
only one maximal ideal pAp, the prime factorization of DBp/Ap

has the form

(5.1) DBp/Ap
= (pAp)

np(B)

for a unique nonnegative integer np(B).

Lemma 5.2. We have np(B) = 0 for all but finitely many p.

Proof. Since Frac(B) = K , by clearing denominators we can find an F -basis y1, . . . , yn for
K contained in B. Let d = D(y1, . . . , yn) ∈ A. It is enough to show that np(B) ≤ vp(d) for
all p, since the latter is zero for all but finitely many p. For any prime ideal p, we have
y1, . . . , yn ∈ B ⊂ Bp. Let x1, . . . , xn be an Ap-basis for Bp, and let M be the unique matrix
with entries in Ap such that M x i = yi. Then det(M) ∈ Ap and

d = D(y1, . . . , yn) = D(M x1, . . . , M xn) = det(M)2 D(x1, . . . , xn)
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by (1.1). Thus d ∈ DBp/Ap
, and DBp/Ap

| dAp. It follows from Lemma 3.2 that dAp =
(pAp)vp(d), and by definition DBp/Ap

= (pAp)np(B), so np(B)≤ vp(d), as desired. �

Definition 5.3. Let A be a Dedekind domain with fraction field F , let K/F be a finite sep-
arable extension of degree n, and let B be the integral closure of A in K . The discriminant
ideal of B/A is defined to be

(5.4) DB/A :=
∏

p

pnp(B) ⊂ A,

where the product is taken over all nonzero prime ideals of A, and where np(B) is defined
in (5.1).

This product has only finitely many factors by Lemma 5.2. If B happens to be a free
A-module, we have now made two a priori different definitions of DB/A in (1.2) and (5.4).
The following lemma implies that they are compatible.

Lemma 5.5. Suppose that B is a free A-module, with A-basis x1, . . . , xn. Then for all nonzero
prime ideals p ⊂ A, we have

np(B) = vp
�

D(x1, . . . , xn)
�

.

Proof. We claim that x1, . . . , xn are an Ap-basis of Bp for any nonzero prime ideal p ⊂
A. Indeed, the x i are Ap-linearly independent (as they are K-linearly independent by
Proposition 1.3(5)), and clearly x1, . . . , xn ∈ Bp, so we only need to show Bp ⊂ Apx1 +
· · ·+Apxn. Let b/s ∈ Bp, where b ∈ B and s /∈ p. Then there exist a1, . . . , an ∈ A such that
b =

∑n
i=1 ai x i, so

b
s
=

1
s

n
∑

i=1

ai x i =
n
∑

i=1

ai

s
x i ∈ Apx1 + · · ·+ Apxn,

as claimed.
It follows that

(pAp)
np(B) = DBp/Ap

= D(x1, . . . , xn)Ap,

so np(B) = vp(D(x1, . . . , xn)) by Lemma 3.2. �

Remark 5.6. Suppose that B/A is a monogenic extension, i.e. that there exists x ∈ B such
that B = A[x]. Then 1, x , x2, . . . , xn−1 is an A-basis for B, soDB/A = D(1, x , x2, . . . , xn−1)A.
Hence ifDB/A is not a principal ideal, then A is not a PID and B/A is not monogenic. These
conditions are commonly satisfied for number fields, but it takes work to write down an
explicit example where DB/A is not principal.

In order to prove the discriminants in towers formula (6.2), we will (not surprisingly)
reduce to the case where A is a PID by localizing. Hence we will need to know that
discriminants are compatible with localizations, as the following lemma shows. Compare
with Lemma 4.5.

Lemma 5.7. Let S ⊂ A \ {0} be a multiplicatively closed subset, let A′ = S−1A, and let
B′ := S−1B. Then DB′/A′ = DB/A A′.
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Proof. This amounts to showing that for every nonzero prime ideal p of A such that p∩S =
;, we have np(B) = np′(B′), where p′ = pA′. Observe that

A′
p′
=
§

a/s
b/t
| a, b, s, t ∈ A, s, t /∈ p,

b
t
/∈ p′

ª

=
§

at
bs
| a, b, s, t ∈ A, b, s, t /∈ p

ª

= Ap,

where b/t /∈ p′ if and only if b /∈ p by Exercise 2.2(2). Similarly, B′
p′
= Bp, so

(pAp)
np(B) = DBp/Ap

= DB′
p′/A

′
p′
= (p′A′

p′
)np′ (B

′).

�

Exercise 5.8. Prove that

DB/A =
�

D(x1, . . . , xn) | x1, . . . , xn ∈ B
�

.

[Compare to Exercise 4.8.]

Exercise 5.9. Let B′ ⊂ B be a subring which is a free A-module of rank n= [K : F]. Prove
that DB/A | DB′/A.

6. Discriminants in towers. We are now in a position to state and prove the discrimi-
nants in towers formula.

Theorem 6.1 (Discriminants in towers). Let A be a Dedekind domain with fraction field F.
Let K/F and L/K be finite separable extensions, and let B (resp. C) be the integral closure
of A in K (resp. L). Then we have an equality of ideals of A:

(6.2) DC/A = NB/A

�

DC/B

�

· D[L:K]
B/A .

We will localize to reduce the proof of Theorem 6.1 to the case when A and B are both
PIDs. In this case, the discriminant and norm ideals in (6.2) are principal, so we can work
on the level of elements. This then becomes a matrix determinant calculation, carried out
in Proposition 6.3 below.

Proposition 6.3. Let F be a field, and let K/F and L/K be finite separable extensions of
degrees n and m, respectively. Let x1, . . . , xn be an F-basis for K and let y1, . . . , ym be a
K-basis for L, so {x i y j | i = 1, . . . , n, j = 1, . . . , m} is an F-basis for L. Then

(6.4) DL/F(x1 y1, . . . , xn ym) = NK/F

�

DL/K(y1, . . . , ym)
�

· DK/F(x1, . . . , xn)
m.

Proof. Fix an algebraic closure C of F . Let σ1, . . . ,σn : K → C be the distinct F -homo-
morphisms. For i = 1, . . . , n let τi1, . . . ,τim : L→ C be the distinct embeddings restricting
to σi on K . Then {τi j | i = 1, . . . , n, j = 1, . . . , m} is the complete set of F -embeddings of
L into C .

Define the following matrices with entries in C:

S = (σi x j)
n
i, j=1

Tk = (τki y j)
m
i, j=1 (k = 1, . . . , n)

M = (τi j(xk y`))
(n,m)
(i, j), (k,l)=(1,1) .
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Here and below we order the pairs (i, j) lexicographically. By [Samuel, Proposition 2.7.3],
we have

DK/F(x1, . . . , xn) = det(S)2

σkDL/K(y1, . . . , ym) = det(Tk)
2

DL/F(x1 y1, . . . , xn ym) = det(M)2.

Let Im be the m×m identity matrix. We have τi j(xk y`) = σi(xk)τi j(y`) because xk ∈ K ,
so we can write M in block form as

M =









(σ1 x1)T1 (σ1 x2)T1 · · · (σ1 xn)T1
(σ2 x1)T2 (σ2 x2)T2 · · · (σ2 xn)T2

...
...

. . .
...

(σn x1)Tn (σn x2)Tn · · · (σn xn)Tn









=









T1 0 · · · 0
0 T2 · · · 0
...

...
. . .

...
0 0 · · · Tn









·









(σ1 x1)Im (σ1 x2)Im · · · (σ1 xn)Im
(σ2 x1)Im (σ2 x2)Im · · · (σ2 xn)Im

...
...

. . .
...

(σn x1)Im (σn x2)Im · · · (σn xn)Im









.

(6.5)

The square of the determinant of the first matrix in the product (6.5) is

det(T1)
2 · · ·det(Tn)

2 = σ1

�

DL/K(y1, . . . , ym)
�

· · ·σn

�

DL/K(y1, . . . , ym)
�

= NK/F

�

DL/K(y1, . . . , ym)
�

.

By performing a series of row and column exchanges, we transform the second matrix in
the product (6.5) into the block matrix









S 0 · · · 0
0 S · · · 0
...

...
. . .

...
0 0 · · · S









.

Hence the square of the determinant of the second matrix is

(det(S)2)m = DK/F(x1, . . . , xn)
m.

Taking products yields (6.4). �
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Example 6.6. Let us illustrate the proof of Proposition 6.3 by taking n = m = 2. In this
case,

M =







σ1 x1τ11 y1 σ1 x1τ11 y2 σ1 x2τ11 y1 σ1 x2τ11 y2
σ1 x1τ12 y1 σ1 x1τ12 y2 σ1 x2τ12 y1 σ1 x2τ12 y2
σ2 x1τ21 y1 σ2 x1τ21 y2 σ2 x2τ21 y1 σ2 x2τ21 y2
σ2 x1τ22 y1 σ2 x1τ22 y2 σ2 x2τ22 y1 σ2 x2τ22 y2







=







τ11 y1 τ11 y2 0 0
τ12 y1 τ12 y2 0 0

0 0 τ21 y1 τ21 y2
0 0 τ22 y1 τ22 y2






·







σ1 x1 0 σ1 x2 0
0 σ1 x1 0 σ1 x2
σ2 x1 0 σ2 x2 0

0 σ2 x1 0 σ2 x2







=
�

T1 0
0 T2

�

·
�

(σ1 x1)I2 (σ1 x2)I2
(σ2 x1)I2 (σ2 x2)I2

�

.

By making one row exchange and one column exchange, we transform:






σ1 x1 0 σ1 x2 0
0 σ1 x1 0 σ1 x2
σ2 x1 0 σ2 x2 0

0 σ2 x1 0 σ2 x2













σ1 x1 σ1 x2 0 0
σ2 x1 σ2 x2 0 0

0 0 σ1 x1 σ1 x2
0 0 σ2 x1 σ2 x2






.

Proof of Theorem 6.1. By Lemma 3.10 it suffices to check that both sides of (6.2) extend
to the same ideal in Ap for all nonzero prime ideals p ⊂ A. By Lemmas 5.7 and 4.5, both
sides of (6.2) are compatible with localizations, so we may replace A by Ap, B by Bp, and
C by Cp to assume A is a discrete valuation ring. Then A and B are PIDs by Lemmas 3.8
and 3.9, so B is a free A-module and C is a free B-module. Let x1, . . . , xn be an A-basis
for B and y1, . . . , ym a B-basis for C . Then {x i y j | i = 1, . . . , n, j = 1, . . . , m} is an A-basis
for C , and

DC/A = DL/F(x1 y1, . . . , xn ym)A
DC/B = DL/K(y1, . . . , ym)B
DB/A = DK/F(x1, . . . , xn)A.

By Proposition 4.4,

NB/A

�

DC/B

�

· D[L:K]
B/A = NB/A

�

DL/K(y1, . . . , ym)B
�

· DK/F(x1, . . . , xn)
m A

= NK/F

�

DL/K(y1, . . . , ym)
�

· DK/F(x1, . . . , xn)
m A,

so the theorem follows from Proposition 6.3. �

Corollary 7. With the notation in Theorem 6.1, we have DB/A | DC/A.

8. Examples and applications. Here we present some situations in which Theorem 6.1
becomes useful. For a number field K we let DK ∈ Z denote the absolute discriminant, so
DOK/Z = DK Z.
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8.1. Multiquadratic extensions of Q. Let d1, . . . , dr be squarefree integers, let

K = Q
�
Æ

d1, . . . ,
Æ

dr

�

,

and let Fi = Q(
p

di) for i = 1, . . . , r. Then Fi ⊂ K for each i, so by Corollary 7, we have
DFi
| DK for all i. The discriminant of a quadratic field is

(8.2) DFi
=

�

di if d ≡ 1 mod 4,
4di otherwise.

Therefore di | DK for each i.
Conversely, we claim that every prime factor of DK divides 2d1 · · · dr . We proceed by

induction on r, the case r = 1 being handled above. Suppose that the claim is true for
r. Let d = dr+1 be a squarefree integer and let L = K(

p
d), so we need to show that

every prime factor of DL divides 2d1 · · · dr d. If L = K then we are done by the inductive
hypothesis, so suppose L 6= K . Then [L : K] = 2, so the conjugates of a + b

p
d over K

are a± b
p

d. Thus

TrL/K(1) = 2 TrL/K(d) = 2d TrL/K(
p

d) =
p

d −
p

d = 0,

where the first two identities hold since 1, d ∈ K and [L : K] = 2. We compute

DL/K(1,
p

d) = det

�

TrL/K(1) TrL/K(
p

d)
TrL/K(

p
d) TrL/K(d)

�

= det
�

2 0
0 2d

�

= 4d.

By Exercise 5.8, we have 4d = DL/K(1,
p

d) ∈ DOL/OK
, so DOL/OK

| 4dOK . Applying Theo-
rem 6.1,

DL/Q Z= DOL/Z = NOK/Z

�

DOL/OK

�

D2
OK/Z

�

� NOK/Z

�

4dOK

�

D2
OK/Z

= NK/Q(4d)D2
OK/Z
= (4d)[K:Q]D2

OK/Z
= (4d)[K:Q]D2

K/Q Z,

where we used Exercise 4.7 for NOK/Z

�

DOL/OK

�

| NOK/Z

�

4dOK

�

, and where NK/Q(4d) =
(4d)[K:Q] because 4d ∈ K . Hence DL/Q | (4d)[K:Q]D2

K/Q, so by induction, every prime
factor of DL/Q divides 2d1 · · · dr d, as claimed. To summarize, we have proved:

Proposition 8.3. Let d1, . . . , dr be squarefree integers, and let K = Q
�p

d1, . . . ,
p

dr

�

. Then
the odd prime factors of DK are exactly the odd prime factors of d1 · · · dr .

Corollary 8.4. Let d1, . . . , dr be squarefree integers, let K = Q
�p

d1, . . . ,
p

dr

�

, and let d
be a squarefree integer which has a prime factor p which is coprime to 2d1 · · · dr . Then d is
not a square in K.

Proof. If d were a square in K then F = Q(
p

d) ⊂ K , so DF | DK by Corollary 7. But d | DF
and d - DK by Proposition 8.3, since p is an odd prime dividing d but not d1 · · · dr . This
is a contradiction. �

For example, 13 is not a square in Q(
p

2,
p

3,
p

5,
p

7,
p

11).
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8.5. The quadratic subfield of Q(ζp). Let p be an odd prime and let ζp be a primitive pth
root of unity. The minimal polynomial for ζp over Q is the p-cyclotomic polynomial

Φp(X ) =
X p − 1
X − 1

= X p−1 + X p−2 + · · ·+ X + 1

by [Samuel, §2.9]. In particular, K = Q(ζp) has degree p − 1 over Q. Moreover, OK =
Z[ζp] by [Samuel, Theorem 2.9.2], so

DK = D(1,ζp,ζ2
p, . . . ,ζp−2

p ) = ±NK/Q(Φ
′
p(ζp))

by [Samuel, §2.8], where Φ′p is the derivative of Φp. We have

Φ′p(X ) =
X p − 1− pX p−1(X − 1)

(X − 1)2
=
Φp(X )− pX p−1

X − 1
and therefore

DK = ±NK/Q

�−pζ−1
p

ζp − 1

�

= ±NK/Q(−p)NK/Q(ζp)
−1 NK/Q(ζp − 1)−1

= ±pp−1 · 1 · p = ±pp,

where we used NK/Q(ζp) = 1 and NK/Q(ζp − 1) = ±p, as shown in [Samuel, §2.9].
The extension K/Q is Galois, being the splitting field of X p−1, and it has Galois group

isomorphic to (Z/pZ)×. This group is cyclic of order p − 1, which is an even number.
Therefore it admits a unique subgroup of index 2, so by the Galois correspondence, there
is a unique subfield F ⊂ K of degree two over Q. As F/Q is quadratic, there is a unique
squarefree integer d such that F = Q(

p
d). By Corollary 7 we have DF | DK = ±pp, so

DF = ±p. But 2 - DK , so DF ≡ 1 mod 4 and d = ±p = DF by (8.2). Observe that

p ≡ 1 mod 4 ⇐⇒ −p ≡ 3 mod 4 and p ≡ 3 mod 4 ⇐⇒ −p ≡ 1 mod 4,

so we have shown:

Proposition 8.6. Let p be an odd prime. Then

p ≡ 1 mod 4 =⇒ pp ∈ Q(ζp) and p ≡ 3 mod 4 =⇒
p

−p ∈ Q(ζp).


	1. Notation and review
	2. Localizations
	3. Localizations of Dedekind domains
	4. The relative ideal norm
	5. The discriminant
	6. Discriminants in towers
	8. Examples and applications

