DISCRIMINANTS IN TOWERS

JOSEPH RABINOFF

Let A be a Dedekind domain with fraction field F, let K/F be a finite separable ex-
tension field, and let B be the integral closure of A in K. In this note, we will define
the discriminant ideal %5, and the relative ideal norm N ,(b). The goal is to prove the
formula

L:K
@C/A = NB/A(@C/B) : @1[3/,4 ],

where C is the integral closure of B in a finite separable extension field L /K. See Theo-
rem 6.1.

The main tool we will use is localizations, and in some sense the main purpose of
this note is to demonstrate the utility of localizations in algebraic number theory via
the discriminants in towers formula. Our treatment is self-contained in that it only uses
results from Samuel’s Algebraic Theory of Numbers, cited as [ Samuel].

Remark. All finite extensions of a perfect field are separable, so one can replace “Let
K /F be a separable extension” by “suppose F is perfect” here and throughout. Note that
Samuel generally assumes the base has characteristic zero when it suffices to assume that
an extension is separable. We will use the more general fact, while quoting [ Samuel] for
the proof.

1. Notation and review. Here we fix some notations and recall some facts proved in
[Samuel]. Let K/F be a finite field extension of degree n, and let x;,...,x, € K. We
define

D(x1,...,x,) = det(TrK/F(xl-xj))i,jzl.

We write Dy instead of D if the field extension is not clear from context. If K/F is

separable and x,..., x, are an F-basis for K, then D(x,,...,x,) # 0 by [Samuel, Propo-
sition 2.7.3]. If M is an n x n matrix with coefficients in F then
(1.1) D(Mx,...,Mx,) =det(M)*-D(xy,...,X,)

by [Samuel, Proposition 2.7.1]. If M is a permutation matrix then det(M) = %1, so
D(x,...,Xx,) is independent of the ordering of its arguments.

Let A be an integrally closed domain with fraction field F, let K/F be a finite extension
of degree n, and let B C K be a subring which is integral over A. Then for x,,...,x, €B,

we have Trg/r(x;Xx;) € A, so D(xy,...,x,) € A. If B is a free A-module of rank n, with
basis x4,...,Xx,, the discriminant ideal is the principal ideal
(1.2) @B/A = D(xl,...,Xn)A.

This is independent of the choice of basis by (1.1), as if M is a change of basis matrix for
B, then det(M) € A*. If K/F is separable then %, is nonzero.
1
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Now we specialize to the case of Dedekind domains. See [Samuel, Theorems 2.7.1
and 3.4.1] for proofs of the following facts.

Proposition 1.3. Let A be a Dedekind domain with fraction field F, let K/F be a finite
separable extension of degree n, and let B be the integral closure of Ain K. Then:

(1) B is a Dedekind domain with fraction field K.

(2) B is an A-submodule of a free A-module of rank n.

(3) B is a finitely generated A-module.

(4) If q C B is a maximal ideal then qNA is a maximal ideal.

(5) If Ais a principal ideal domain, then B is a free A-module of rank n, and any A-basis
for B is an F-basis for K.

Let A be a Dedekind domain with field of fractions F. For a nonzero fractional ideal
a C F, we have a unique factorization

— v(a)’
a Upp

where the product is taken over all nonzero prime ideals of A. Of course, all but finitely
many of the integers v,(a) are zero. For fixed p we have v,(ab) = v,(a) + v,(b), where
a,b C F are nonzero fractional ideals. For x € F* we write v,(x) = v,((x)).

Remark 1.4. We will follow Samuel’s convention that a field is a Dedekind domain. This
has the advantage that any localization of a Dedekind domain is Dedekind (see Propo-
sition 2.1 below), but the disadvantage that one has to distinguish between “maximal
ideal” and “nonzero prime ideal” throughout.

2. Localizations. For our purposes, the main advantage of localizations is that they pro-
duce principal ideal domains from Dedekind domains. This allows us to use the classifica-
tion of modules over a PID, and facilitates our constructions and proofs. The localization
is well-behaved, in that it respects most ring-theoretic constructions, and one can recover
information about a ring from its localizations.

Let Abe an integral domain with fraction field F, and let S € A\ {0} be a multiplicatively
closed subset. Recall that the localization of A at S is

-1 a
S A::{;eFlaeA,sES}.

This is a subring of F containing A, and the fraction field of S™'A is F. For a prime ideal
p C A, the complement A\ p is multiplicatively closed, and we write

A, = (A\p) A= {E €Fla,s€As ¢p}.
s

We call A, the localization of A at p. If A is a subring of an integral domain B and p C A
is a prime ideal, then A\ p is also a multiplicatively closed subset of B, and we write
B, = (A\ p)~'B. Note that B, in general is not the localization of B at a prime ideal of B.

Let A be an integral domain, let S C A\ {0} be a multiplicatively closed subset, and let
A’ = S7'A. For an ideal a C A, we define its extension aA’ to be the ideal of A’ generated
by a. The contraction of an ideal a’ C A’ is the ideal a’ N A of A. An ideal of A of the form
a’ NAis called contracted.
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We have the following ideal correspondence for localizations from [Samuel, Proposi-
tion 5.1.1]. Note the similarity with the ideal correspondence for quotients.

Proposition 2.1. Let A be an integral domain, let S C A\ {0} be a multiplicatively closed
subset, and let A’ = S'A.

(1) For every ideal o’ C A’ we have (o’ NA)A' = d'.

(2) Extension and contraction give rise to an inclusion-preserving bijection

{contracted ideals of A} — {ideals of A’}.
(3) The bijection of (2) restricts to a bijection
{prime ideals p C Asuch thatpnNS = (Z)} — {prime ideals of A/}.
In other words, a prime ideal p C A is contracted if and only if pN S = (.

Exercise 2.2. Let A be an integral domain, let a C A be an ideal, let S C A\ {0} be a
multiplicatively closed subset, and let A" = S™'A. Prove that:

(D aA’:{g|a€a,s€S .
s

(2) If p c Ais prime with pNS =0, a € Aand s € S, then a/s € pA’ if and only if
a € p. [Careful: remember that there are multiple ways of expressing an element
of S!A as a fraction.]

(3) The contraction of a nonzero ideal is nonzero.

(4) Extension is compatible with products, in that for any two ideals a,b C A,

(aA)(bA) = (ab)A'.

(5) aA'=A'ifand only if SN a # 0.
(6) A=S'Aif and only if S C A*.

Exercise 2.3. Let A be an integral domain, let a C A be a proper ideal, and let S =1 +a.
Verify that S is a multiplicatively closed subset, and show that for a prime ideal p C A, we
have pNS # @ if and only if p + a = A.

3. Localizations of Dedekind domains. The localization is an extremely well-behaved
construction, in that it is compatible with most of the ring-theoretic constructions we
have already encountered. For instance, we have [Samuel, Proposition 5.1.2 and 5.1.3].

Proposition 3.1. Let A be a Dedekind domain with fraction field F, let S C A\ {0} be
a multiplicatively closed subset, let K/F be a finite separable extension, and let B be the
integral closure of Ain K. Then

(1) S7B is the integral closure of S"'Ain K, and
(2) S7'B is a Dedekind domain.

By Exercise 2.2, nonzero prime ideals in S™*A correspond to nonzero prime ideals in
A which are disjoint from S. The following lemma relates prime factorizations in A to
prime factorizations in S™'A.

Lemma 3.2. Let A be a Dedekind domain, let S C A\ {0} be a multiplicatively closed subset,
and let A :=S™'A
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(1) If a C Ais a nongero ideal then
a=] [p® = aa'= ] ] ().
p pNS=0
(2) If a’ c A is a nongero ideal then
o= l_[ (pA)» () = o' NA= l_[ pron @),
pnS=0 pNS=0

(3) The nonzero contracted ideals in A are those ideals whose prime factors are disjoint
from S.

In other words, to find the prime factorization of aA’, one simply deletes the prime
factors which do not give rise to prime ideals of A’. By Proposition 2.1(3), every nonzero
prime ideal of A’ has the form p A’ for a nonzero prime ideal p C A, and Lemma 3.2 implies
the compatibility

(3.3) Vpu(aA) =v,(a).

Proof. By Exercise 2.2(4), extension is compatible with ideal products, so

aA = l_[(pA/)vp(a) — l_[ (pA/)vp(u)
p pNS=0
because pA’ = A’ when pNS # ). This gives (1). Now we prove (2). By Proposition 2.1(1),
the ideal a := a’ N A extends to a’, and by (1), the ideal b := ]_[mS:@ p¥ra (@) extends to o’
as well. Clearly
bc(bA)NA=d NA=aq,
so a | b. This implies v,(a) < v,(b) for all primes p C A. By construction and (3.3), if
pNS =0 then v,(b) = v,x(a") = v,(a), and since v,(b) = 0 for pN S # @, for such p we
have
0<v,(a) <v,(b)=0.

This means v,(a) = v,(b) for all p, so a = b. This proves (2); part (3) follows from (1)
and (2). O

We will produce principal ideal domains from Dedekind domains in the following way.

Definition 3.4. A nonzero ring is called semi-local if it has finitely many maximal ideals.
A Dedekind domain with exactly one nonzero prime ideal is a called a discrete valuation
ring, or DVR.

Lemma 3.5. A semi-local Dedekind domain is a PID. In particular, a DVR is a PID.

Proof. Let Abe a semi-local Dedekind domain with nonzero prime ideals p4,...,p,. These
are distinct maximal ideals, so they are pairwise coprime: p; +p; = (1) for i # j. More-
over, since p?> does not share any common factors with p; for j = 2, we have likewise
p? +p; = ged(p?, p;) = (1). Applying the Chinese remainder theorem gives a surjection
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with kernel p?p,---p,. Let X € p,/p? be a nonzero element, and choose x € A such that
c¢(x) = (x,1,...,1). Then x € p, but not p?, and for j > 2 we have x = 1 mod p; for
j = 2,50 x ¢ p;. Interms of ideals, this says p; | (x) but pf t (x), and p; t (x) for
j = 2. Hence (x) = p,, as this is the only possible prime factorization. It follows that p,
is principal, and by the same argument, that p; is principal for all i. As any nonzero ideal
in A is a product of prime ideals, A is a principal ideal domain. U

Remark 3.6. Let A be a DVR with maximal ideal p. Then p = (p) is principal, and every
nonzero ideal of A has the form p" for some n > 0, since there are no other possible ideal
factorizations. Hence the ideals of A are (1), (p), (p?), (p*),---,(0).

Example 3.7. The ring A= C[ t] is a DVR with maximal ideal (t).
Lemma 3.8. If Ais a Dedekind domain, then A, is a DVR, and pA, is its maximal ideal.

Proof. We know that A, s Dedekind by Proposition 3.1(2), and by Proposition 2.1(3) that
every nonzero prime ideal of A, has the form qA, for a nonzero prime ideal q C A such
that qN(A\p)=0. But qn(A\ p) =0 if and only if q C p, so since p and q are maximal,
we must have p = q. O

Lemma 3.9. Let A be a discrete valuation ring with fraction field F, let K/F be a finite
separable extension, and let B be the integral closure of Ain K. Then B is semi-local, hence
a PID.

Proof. Let q be a maximal ideal of B. Then qNA is a maximal ideal by Proposition 1.3(4),
so qNA = p, the unique maximal ideal of A. Thus p C g, so pB C q, and hence q | pB. But
pB has only finitely many prime factors. O

It follows from Lemmas 3.8 and 3.9 that if A is a Dedekind domain with fraction field
F, p C Ais a nonzero prime, K/F is a finite separable extension, and B is the integral
closure of A in K, then both A, and B, are PIDs.

We will also use localizations to test if two ideals are equal.

Lemma 3.10. Let A be a Dedekind domain, and let a,a’ C A be nongero ideals. Then a = o’
if and only if aA, = oA, for all nonzero prime ideals p C A.

Proof. If aA, = o’A, then v,(a) = v,(a’) by (3.3). Hence a and a’ have the same prime
factorizations. O

Exercise 3.11. Let A be a Dedekind domain, let S € A\ {0} be a multiplicatively closed
subset, and let A’ = S™'A. Prove that for any two ideals o, b’ C A’, we have

(¢’ NA)-(6'NA)=(a'b)NA.

In other words, contraction is compatible with products in the case of localizations of
Dedekind domains."

Exercise 3.12. Let A be a Dedekind domain, let S € A\ {0} be a multiplicatively closed
subset, and let A’ = S~'A.

I strongly believe this to be false in general, but I cannot find a counterexample when A is an integral
domain.
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(1) Let p C A be a nonzero prime ideal such that p NS = @. Generalize [Samuel,
Proposition 5.1.5] to prove that for any n > 0, the natural homomorphism

Alpt — A /(pA)"

is an isomorphism.
(2) Let a C A be a nonzero contracted ideal. Prove that the natural homomorphism

Ala— A'/aA’
is an isomorphism.

Exercise 3.13. Let A be a Dedekind domain and let a C A be a nonzero ideal.

(1) Prove that every ideal of A/a is principal. [Localize at S = 1+ a as in Exercise 2.3.
Show that a is contracted and S™!A is semi-local, then use Exercise 3.12(2).]

(2) Prove that a can be generated by two elements. [Apply (1) to the ideal a/aA of
A/aA for any nonzero element a € a.]

Exercise 3.14. Let K be a number field and let A = 0. Prove that there exists f € A\ {0}
such thatA; :== {1, f, f 2 ...} 'Ais a principal ideal domain. [Choose f to kill all elements
of the class group of A.]

Exercise 3.15. Generalize Lemma 3.9 as follows. Let A be a semi-local Dedekind domain
with fraction field F, let K/F be a finite separable extension, and let B be the integral
closure of A in K. Show B is semi-local.

Exercise 3.16. Suppose that there were finitely many prime numbers. Use Exercise 3.15
to prove that Z[ +/—5] is a PID, and derive a contradiction. Thus there are infinitely many
prime numbers.”

4. The relative ideal norm. In this section we fix a Dedekind domain A with fraction
field F. Let K/F be a finite separable extension of degree n, and let B be the integral
closure of Ain K. For a nonzero ideal b C B we will define its relative norm Ny ,(b), which
is an ideal of A. This will generalize the (absolute) ideal norm N(b) defined when A= Z,
and it will also generalize the norm of an element Ny .(x) for x € B. See Remark 4.2
and Proposition 4.4.

By Proposition 1.3, B is a Dedekind domain and a finitely generated A-module, and
for every maximal ideal q C B, the contraction p := q N A is a maximal ideal. Hence A/p
is a subfield of B/q. Any set of generators for B as an A-module also generates B/q as a
vector space over A/p, so the degree [B/q : A/p] is finite.

Definition 4.1. Let b = [ [, ¢"*) be a nonzero ideal of B. The relative ideal norm of b is
defined to be

Nyja(0) = [ [(anay®/eamine,
q

where p = qNA.
For ideals b, b’ C B, we have Ny 4(bb”) = Ny 4(b) N 4(b") since v,(bb") = v,(b) +v,(b").

2Brian Conrad attributes this ridiculous proof to Larry Washington.
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Remark 4.2. Suppose that A=7Z, so F = Q and K is a number field with ring of integers
B = 0. The absolute ideal norm N(b) of a nonzero ideal b C B is defined to be the (finite)
number of elements of the quotient ring, i.e. N(b) := #(B/b). We claim that

The absolute ideal norm is multiplicative in b by [ Samuel, Proposition 3.5.2], so it suffices
to prove N(q)Z = Ny 5(q) = (N Z)!B/9:2/9%2] for g C B prime. But it is easily verified that

N(q) = #(B/q) = plP/4:5],
where gNZ = pZ.

The following proposition says that the relative ideal norm is compatible with the norm
of an element. It is surprising because the two kinds of norm are defined in completely
different ways: indeed, the norm of an element b is defined as the determinant of mul-
tiplication by b.

Proposition 4.4. Let b € B\ {0}. Then Ng,,(bB) = Ng,r(b)A.

In order to prove Proposition 4.4, we first need to show that the relative ideal norm is
compatible with localizations.

Lemma 4.5. Let S be a multiplicatively closed subset of A, let A’ := S™'A, and let B := S™'B.
Then for every nongero ideal b C B, we have

NB/A(b)A/ - NB//A/(bB/).

Proof. As norms and extensions are both multiplicative in b, we may assume b = q is
prime. Let p = qNA, and note that pNS = qNS because S CA. If qNS # @ then qB’ =B/,
s0 N/ /»(qB") =A'. In this case, pN S # @ as well, so pA’ = A’, and

NB/A(q)A/ = P[B/qﬂ/p]A/ = (pA’)[B/UI’A/p] — A

Now suppose qNS =pNS = 0. Then B/q = B'/(qB’) and A/p = A’/pA’ by [Samuel,
Proposition 5.2.5]. Moreover,

((@BYNA)NA=(gB)NA=((4B)NB)NA=qNA=p,

so (qB’) N A" = pA’ because they contract to the same ideal of A. Hence we have a com-
mutative square

A/p——B/q

;l lg

A//pA/(ﬁ' B//qB/
so [B/q:A/p]=[B’/qB’ : A'/pA’]. It follows that
Np/a(@)A' = pP/aAIA = (pA )/ B AT = Ny, 4 (qB).
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Proof of Proposition 4.4. By Lemma 3.10, it suffices to check that for all nonzero prime
ideals p C A, we have Ng,,(bB)A, = Ng,p(b)A,. Lemma 4.5 gives that Ny, (bB)A, =
Ng, /Ap(be), so we may replace A by A, and B by B, to assume A is a discrete valuation
ring. Thus A and B are principal ideal domains by Lemmas 3.8 and 3.9. As ideal and
element norms are multiplicative, and since B is a unique factorization domain, it suffices
to show that Ny ,,(qB) = Ng,r(q)A for g € B a prime element. The contraction (¢gB) NA
is the unique maximal ideal of A; let p be a generator. By the classification of finitely
generated modules over a PID, we have

(4.6) B/qB=A/p®Ax--- xA/p“A
for some 1 <e; <e, <--- <e,, since pA is the only maximal ideal of A. But p € gB, so
p annihilates B/gB, so e; = ... =¢, =1, and B/qB = (A/pA)". This means that B/qB is

an r-dimensional A/pA-vector space, so by definition, Ny ,,(pB) = (pA)" = p"A. On the
other hand, equation (4.6) shows that the Smith normal form for the multiplication-by-q
homomorphism m,: B — B is the diagonal matrix

b

1

with r diagonal entries being p and the rest being 1. Hence Ny z(p) = det(m,) =p", up
to units. U

Exercise 4.7. Let b, b’ be nonzero ideals of B, with b | b’. Show that Ny ,,(b) | N,,(b"),
and that if Ny 4(b) = Np/4(b") then b =b'.
Exercise 4.8. Let b be a nonzero ideal of B.
(1) Prove that
NB/A(b) = (NK/F(X) | x € b)-
[Localize at a nonzero prime ideal of A.]
(2) Prove by example that Ny ,(b) is not necessarily generated by the norms of a

given set of generators for b. [Take b = B, and suppose that there are two distinct
nonzero prime ideals of B which contract to the same ideal of A.]

Exercise 4.9. Let L /K be a finite separable extension and let C be the integral closure of
B (or A) in L. Prove that for any nonzero ideal ¢ C C, we have

NB/A ( NC/B(C)) = NC/A(C)-
[It is tempting to use Exercise 4.8(1), but this does not work because of Exercise 4.8(2).]

Exercise 4.10. Let a be a nonzero ideal of A. Prove that
Ng,a(aB) = alkeFl,

[Localize to reduce to the case where a is principal. ]
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Exercise 4.11. Suppose that K/F is Galois with Galois group G = Gal(K/F). Note that
o(B) = B for all o € G. Prove that for a nonzero ideal b C B,

NB/A([’)B = l_[ o(b).

oeG

[The left side is included in the right by Exercise 4.8. Take norms of both sides.]

Remark 4.12. Suppose that F = Q and A =Z, and that K/F is Galois with Galois group
G = Gal(K/F). By Exercise 4.11 and Remark 4.2, for any nonzero ideal b C B = 0, we
have
N©)G =] [ o (o),
oeG
where N(b) = #( 0y /b) € Z, is the absolute ideal norm. This useful observation gives a
concrete formula for the inverse fractional ideal:

1
-1
b = —(b) 0—|7é1| a(b).

The situation becomes particularly simple when K = Q(+/d) is a quadratic extension
of Q. In this case K /Q is automatically Galois, with Gal(K/Q) = {1, 7}, where 7(+/d) =
—+/d. Writing b = 7(b) for a nonzero ideal b C &, we obtain

N(6)Z = bb.

5. The discriminant. In this section we fix a Dedekind domain A with fraction field F.
Let K/F be a finite separable extension of degree n, and let B be the integral closure
of Ain K. By Proposition 1.3, B is a Dedekind domain with fraction field K, and B is
an A-submodule of a free A-module of rank n. However, if A is not a principal ideal
domain then B may not itself be a free A-module, so that we cannot use (1.2) to define
the discriminant 25 ,,. We will use localizations in order to define the discriminant 25,
in this case.

By Proposition 3.1(1), for any prime ideal p C A, the integral closure of A, in K is
B, :=(A\p)~'B. Since A, is a principal ideal domain, B, is a free A,-module of rank n, so
the discriminant ideal @Bp /A, of (1.2) is a well-defined nonzero ideal of A,. Since A, has
only one maximal ideal pA,, the prime factorization of 9, ,, has the form

(5.1) Dy, /2, = (PAp)n”(B)
for a unique nonnegative integer n,(B).
Lemma 5.2. We have n,(B) = 0 for all but finitely many p.

Proof. Since Frac(B) = K, by clearing denominators we can find an F-basis y,, ..., y, for
K contained in B. Let d = D(y;,...,Y,) €A. It is enough to show that n,(B) < v,(d) for
all p, since the latter is zero for all but finitely many p. For any prime ideal p, we have
Y15+++>Yn € B CB,. Let x4,...,x, be an A,-basis for B,, and let M be the unique matrix
with entries in A, such that Mx; = y;. Then det(M) € A, and

d=D(yy,...,¥,) =D(Mxy,...,Mx,) =det(M)*D(x,,...,x,)
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by (1.1). Thus d € Ds, /A, > and D, A, | dA,. It follows from Lemma 3.2 that dA, =
(pAp)"P(d), and by definition Dy, ja, = (pAp)”P(B), so n,(B) < v,(d), as desired. O

Definition 5.3. Let A be a Dedekind domain with fraction field F, let K /F be a finite sep-
arable extension of degree n, and let B be the integral closure of Ain K. The discriminant
ideal of B/A is defined to be

(5.4) Dusa =] @ 4,
p

where the product is taken over all nonzero prime ideals of A, and where n,(B) is defined
in (5.1).

This product has only finitely many factors by Lemma 5.2. If B happens to be a free
A-module, we have now made two a priori different definitions of 2, /ain (1.2) and (5.4).
The following lemma implies that they are compatible.

Lemma 5.5. Suppose that B is a free A-module, with A-basis x, ..., Xx,. Then for all nonzero
prime ideals p C A, we have

n,(B) = vp(D(xl, . ..,xn)).

Proof. We claim that xy,...,x, are an A,-basis of B, for any nonzero prime ideal p C
A. Indeed, the x; are A, -linearly independent (as they are K-linearly independent by
Proposition 1.3(5)), and clearly x,,...,x, € B,, so we only need to show B, C A,x; +
-+++A,x,. Let b/s € B,, where b € B and s ¢ p. Then there exist ay,...,a, €A such that

n
b=>,_ a;x;,so

n n
? = %Zaixi :Z%Xi EAX + -+ A X,
i=1 i=1
as claimed.
It follows that
(PAp)n"(B) = Dg,/a, = D(xy, .-+, X,) Ay,
so n,(B) = v,(D(xy,...,x,)) by Lemma 3.2. d

Remark 5.6. Suppose that B/A is a monogenic extension, i.e. that there exists x € B such
that B=A[x]. Then 1,x,x?,...,x" " is an A-basis for B, s0 D5/, = D(1,x,x?,...,x" A
Hence if 95, is not a principal ideal, then A is not a PID and B /A is not monogenic. These
conditions are commonly satisfied for number fields, but it takes work to write down an
explicit example where 2y, is not principal.

In order to prove the discriminants in towers formula (6.2), we will (not surprisingly)
reduce to the case where A is a PID by localizing. Hence we will need to know that
discriminants are compatible with localizations, as the following lemma shows. Compare
with Lemma 4.5.

Lemma 5.7. Let S C A\ {0} be a multiplicatively closed subset, let A’ = S7'A, and let
B/ = S_lB. Then @B//A/ = @B/AA/‘
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Proof. This amounts to showing that for every nonzero prime ideal p of A such that pNS =
@, we have n,(B) = n,(B’), where p’ = pA’. Observe that

. fa)s b
A/: 7 . s Uy 9, A: 5 s
p {b/tlabste st¢pt¢p}

t
= {a_ |a,b,s,t €A, b,s,t §ép} =A,,
bs
where b/t ¢ p’ if and only if b ¢ p by Exercise 2.2(2). Similarly, B;, = B,, so
pA)* P =9y, = Dy, 14, = (w'A, )y .

Exercise 5.8. Prove that
Dy jp = (D(xl,...,xn) | xq1,...,%, GB).
[Compare to Exercise 4.8.]

Exercise 5.9. Let B’ C B be a subring which is a free A-module of rank n = [K : F]. Prove
that @B/A | @B//A'

6. Discriminants in towers. We are now in a position to state and prove the discrimi-
nants in towers formula.

Theorem 6.1 (Discriminants in towers). Let A be a Dedekind domain with fraction field F.
Let K/F and L /K be finite separable extensions, and let B (resp. C) be the integral closure
of Ain K (resp. L). Then we have an equality of ideals of A:

(6.2) Dcia=Nga (90/3) ' @1[3%{]'

We will localize to reduce the proof of Theorem 6.1 to the case when A and B are both
PIDs. In this case, the discriminant and norm ideals in (6.2) are principal, so we can work
on the level of elements. This then becomes a matrix determinant calculation, carried out
in Proposition 6.3 below.

Proposition 6.3. Let F be a field, and let K/F and L/K be finite separable extensions of
degrees n and m, respectively. Let xq,...,x, be an F-basis for K and let y,,...,Y,, be a
K-basis for L, so {x;y;|i=1,...,n, j=1,...,m} is an F-basis for L. Then

(6.4) DL/F(X1J’1, e Xy Ym) = Nk /r (DL/K(.yl: e ,}’m)) : DK/F(xla ce X))

Proof. Fix an algebraic closure C of F. Let 04,...,0,: K — C be the distinct F-homo-
morphisms. Fori =1,...,nlet7;;,...,7;,: L — C be the distinct embeddings restricting
to o, on K. Then {7;;|[i=1,...,n, j=1,...,m} is the complete set of F-embeddings of
L into C.

Define the following matrices with entries in C:
J ?,j=1

m

Tk:(Tki.yj i,j=1 (kzl,...,n)

S=(o;x

_ (n,m)
M= (Tij(xkyé))(i,j)’(kyl):(l,n .
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Here and below we order the pairs (i, j) lexicographically. By [ Samuel, Proposition 2.7.3],
we have

DK/F(XD tee xn) = det(s)2

GkDL/K(ylz e Ym) = det(Tk)2
DL/F(leb cee Xn.ym) = det(M)z-

Let I,, be the m x m identity matrix. We have 7,;(x,y,) = 0;(x;)7;;(y,) because x; € K,
so we can write M in block form as

(o0 x))Ty (0,x)T; -+ (01x,)T)
M = (02x)T, (022)T, -+ (02x,)T,
(0. x)T, (0, x)T, -+ (0,x,)T,
6.5) - 2
T, 0 --- 0 (o x)IL, (ox), -+ (o1x)I,
0 T2 v 0 (O‘le)lm (szz)lm (O-an)lm
|0 0 - T, (o, x I, (o,x)I, - (o,x,)I,

The square of the determinant of the first matrix in the product (6.5) is

det(T1)2 Tt det(Tn)Z = 01(DL/K(J’1, e )ym)) T O'n(DL/K(J’b e )ym))
= NK/F (DL/K(yla cee ,}’m))-

By performing a series of row and column exchanges, we transform the second matrix in
the product (6.5) into the block matrix

S 0 - 0
oS - 0
00 S

Hence the square of the determinant of the second matrix is
(det(S)z)m = DK/F(xl) tee Xn)m'

Taking products yields (6.4). O



DISCRIMINANTS IN TOWERS 13

Example 6.6. Let us illustrate the proof of Proposition 6.3 by taking n = m = 2. In this

case,
O1X1TnY1 01X1T1Y2 01 X2T11Y1 O1X2T1)2
M= [ FrF1T12)1 01X T2)s 01XaTia)1 O1XpT12)2
02X1T21Y1 O2X1T21Y2 02XT21)1 O2X3T21)2
[ O2X1T22Y1 O2X1T22Y2 O2XT22Y1 O02X3T22)»
Ty T2 0 0 ox; 0 ox; O
_ [Ty Tiy2 O 0 0 ox; 0 ox
0 0 ToaY1 T2a1)2 o,x; 0 0oyx; O
Y 0 Tl1 T22)2 0 o 0  0.x,
_ [T1 0 ] . |:(0'1X1)12 (lez)Iz]
0 T, (o2x )l (02%5)I,
By making one row exchange and one column exchange, we transform:
01X, 0 oxy O o.x; O1x5 O 0
0 ox; 0 ox, AAAS | T2X1 02X 0 0
oyx; 0 o0yx9 O 0 0 o1x; 0%y
0 o7 0 o0yx, 0 0  0yx; Oyxy

Proof of Theorem 6.1. By Lemma 3.10 it suffices to check that both sides of (6.2) extend
to the same ideal in A, for all nonzero prime ideals p C A. By Lemmas 5.7 and 4.5, both
sides of (6.2) are compatible with localizations, so we may replace A by A,, B by B,, and
C by C, to assume A is a discrete valuation ring. Then A and B are PIDs by Lemmas 3.8
and 3.9, so B is a free A-module and C is a free B-module. Let x,...,x, be an A-basis
for B and yy,..., Yy, a B-basis for C. Then {x;y;|i=1,...,n, j=1,...,m} is an A-basis
for C, and

Dejn= DL/F(Xl.yl’ e X Ym)A

Deip =Dryx(Y15-- > Ym) B

Dyjn = DK/F(Xls XA

By Proposition 4.4,
NB/A (@c/B) : @1[;/;41(] = NB/A (DL/K(.yI: . :ym)B) : DK/F(Xla cee ,Xn)mA
= Ng/r (DL/K(yD e ;ym)) : DK/F(xb cH XA,
so the theorem follows from Proposition 6.3. OJ
Corollary 7. With the notation in Theorem 6.1, we have D | D¢ a-

8. Examples and applications. Here we present some situations in which Theorem 6.1
becomes useful. For a number field K we let D, € Z denote the absolute discriminant, so
@ﬁK/Z == DK Z.
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8.1. Multiquadratic extensions of Q. Let d,,...,d, be squarefree integers, let

K= QY. V),

and let F; = Q(4/d,) fori =1,...,r. Then F, C K for each i, so by Corollary 7, we have
Dy, | D for all i. The discriminant of a quadratic field is

d, ifd=1 mod 4,
4d; otherwise.

(8.2) Dy, = {

Therefore d; | Dy for each i.

Conversely, we claim that every prime factor of Dy divides 2d, ---d,. We proceed by
induction on r, the case r = 1 being handled above. Suppose that the claim is true for
r. Let d = d,,, be a squarefree integer and let L = K(+/d), so we need to show that
every prime factor of D; divides 2d, ---d,d. If L = K then we are done by the inductive
hypothesis, so suppose L # K. Then [L : K] = 2, so the conjugates of a + bv/d over K
are a £ bv/d. Thus

Tr, (1) =2 Tr(d)=2d Tr(Vd)=vd—+vd=0,
where the first two identities hold since 1,d € K and [L : K] = 2. We compute

_ Try k(1) TrLK(\/a) _ 2 0] _
Pl ‘/E)‘det[m/;(ﬁ) ey (d) ] =de[g |4

By Exercise 5.8, we have 4d = Dy (1, Vd) e D6, /6. 50 Dy, /0, | 4dOx. Applying Theo-
rem 6.1,

D1/oZ = 20,2 = Nowz(20,10.) 23, 12 | Nawz(4d6¢) 25,

= N o(4d) Q;K = (4d)ix:Ql @;K = (4d)«QIp2 1oL

where we used Exercise 4.7 for Ng /5 (@ﬁL/ﬁK) | Ny, /z (4d 0K), and where Ny ,o(4d) =
(4d)Q because 4d € K. Hence Do | (4d) X9 D2 /o0 S0 by induction, every prime
factor of Dy o divides 2d, - - - d,d, as claimed. To summarize, we have proved:

Proposition 8.3. Let d,,...,d, be squarefree integers, and let K = Q(\/ di,..., 4/ dr). Then
the odd prime factors of Dy are exactly the odd prime factors of d; -+ -d.,.

Corollary 8.4. Let d,,...,d, be squarefree integers, let K = Q(\/ dy,..., \/d—r), and let d
be a squarefree integer which has a prime factor p which is coprime to 2d, ---d,. Then d is
not a square in K.

Proof If d were a square in K then F = Q(+/d) C K, so D; | D¢ by Corollary 7. But d | Dy
and d t Dy by Proposition 8.3, since p is an odd prime dividing d but not d; - --d,.. This
is a contradiction. O

For example, 13 is not a square in Q(+/2, v/3, v/5, V7, v/11).
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8.5. The quadratic subfield of Q({,). Let p be an odd prime and let ¢, be a primitive pth
root of unity. The minimal polynomial for ¢, over Q is the p-cyclotomic polynomial

p__
X —
by [Samuel, §2.9]. In particular, K = Q({,) has degree p — 1 over Q. Moreover, Gy =
Z[{,] by [Samuel, Theorem 2.9.2], so

DK = D(]-s C/p) C[Z)’ cee 65—2) =+ NK/Q((I);(CP))
by [Samuel, §2.8], where <1>;) is the derivative of ®,. We have

1
®,(X)= : =XP1 4+ XP 24+ X +1

XP—1-pXP (X —1)  &,()—px""

' (X)=
pX) (X —1)2 X—1
and therefore
Dy = 4N (—P?)
K = K/Q\ > _ 1
gp_l

= £ Nk ,o(—p) NK/Q(Z:p)_l Nk /o(¢, — I
=+pP7'-1.p=pF,
where we used Ng,o({,) = 1 and Ng (¢, —1) = £p, as shown in [Samuel, §2.9].

The extension K /Q is Galois, being the splitting field of X? —1, and it has Galois group
isomorphic to (Z/pZ)*. This group is cyclic of order p — 1, which is an even number.
Therefore it admits a unique subgroup of index 2, so by the Galois correspondence, there
is a unique subfield F C K of degree two over Q. As F/Q is quadratic, there is a unique
squarefree integer d such that F = Q(+/d). By Corollary 7 we have D, | Dy = £p®, so
Dp ==£p. But 24Dy, so D =1 mod 4 and d = £p = D; by (8.2). Observe that

p=1 mod4 < —p=3 mod4 and p=3 mod4 < —p =1 mod 4,
so we have shown:

Proposition 8.6. Let p be an odd prime. Then
p=1 mod4 = /p€Q({,) and p=3 mod4 = +/—p<Q(,).
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