

Math 4803/8803 Final Examination

Due by 5pm on Friday, December 11.

Collaboration on the final is *not* allowed. You may only refer to your notes, the textbook, previous homework assignments, and other course materials.

1. Let K be a number field. Show that \mathcal{O}_K is a PID if and only if every nonzero ideal $\mathfrak{a} \subset \mathcal{O}_K$ contains an element x such that $|\mathcal{N}_{K/\mathbb{Q}}(x)| = \mathcal{N}(\mathfrak{a})$.

2. Let $x \in \mathbb{C}$ be a root of $X^3 + 10X + 1$ and let $y \in \mathbb{C}$ be a root of $X^3 - 8X + 15$. Let $K = \mathbb{Q}(x)$ and $L = \mathbb{Q}(y)$.

a) Show $D_K = D_L$, and compute \mathcal{O}_K and \mathcal{O}_L .

a) Show that 17 is inert in K , but that 17 splits completely in L .

a) Use (b) to prove $K \not\cong L$.

Hence cubic fields with the same discriminant need not be isomorphic. (In contrast, quadratic fields are classified by their discriminant.)

3. Prove that $\mathbb{Z}[\sqrt{2}]$ is a PID.

4. Let A be a Dedekind domain with fraction field F , let K/F be a finite separable extension, and let B be the integral closure of A in K . Prove that

$$\mathcal{D}_{B/A} = (D(x_1, \dots, x_n) \mid x_1, \dots, x_n \in B).$$

[Localize at a prime ideal of A .]

5. Let $K = \mathbb{Q}(\sqrt{-6})$. Determine which prime numbers p split, ramify, and remain inert in \mathcal{O}_K . Your answer should only involve the congruence class of p modulo 24 for $p > 3$. [Hint: use quadratic reciprocity.]