
MATH 4803/8803
MIDTERM EXAMINATION

Name

1 2 3 4 5 Total

• Solve four of the five problems on this exam. Circle which problems you’d
like to be graded in the grid above.

• Each problem is worth 10 points. The maximum score on this exam is 40
points.

• You have 50 minutes to complete this exam.

• There are no aids of any kind (notes, text, etc.) allowed.

• All answers must be justified unless otherwise noted, and all proofs must be
written in clear and grammatical English.

• You may cite any theorem, lemma, proposition, etc. proved in class or in the
sections we covered in the text.

• Good luck!



Problem 1.

Let A be an integral domain and M an A-module. The torsion submodule of M
is the subset of all torsion elements:

Mtors :=
{
x ∈M | ∃a ∈ A \ {0} such that ax = 0

}
.

i. Prove that Mtors is a submodule of M .

ii. Prove that M/Mtors is torsionfree, i.e. that (M/Mtors)tors = 0.

iii. If A is a PID and M ∼= A/(a1) × · · · × A/(an) × Ar as in the classification
theorem, what are Mtors and M/Mtors? What is the annihilator of M?

Solution.

i. Clearly 0 ∈Mtors. For x, y ∈Mtors there exist a, b ∈ A\{0} such that ax = by =
0. Since A is a domain, ab 6= 0. We have ab(x − y) = 0, so x − y ∈ Mtors, and
thusMtors is a subgroup ofM . Also for r ∈ Awe have a(rx) = r(ax) = r·0 = 0,
so Mtors is a submodule.

ii. Let x = x +Mtors ∈ M/Mtors, and suppose that there exists a ∈ A \ {0} such
that ax = 0. Then ax ∈Mtors, so there exists b ∈ A \ {0} such that abx = 0. As
above ab 6= 0, so x ∈Mtors, and therefore x = 0.

iii. Let
x = (x1, . . . , xn, y) ∈ A/(a1)× · · · × A/(an)× Ar,

and suppose that ax = 0 for some a ∈ A \ {0}. Then axi ∈ (ai) for all i, and
ay = 0. This latter is only possible when y = 0, soMtors ⊂ A/(a1)×· · ·×A/(an).
On the other hand, if y = 0 then anx = 0 (since ai | an for all i), so this
inclusion is an equality. Define ϕ : M � Ar by (x1, . . . , xn, y) 7→ y. Then
ker(ϕ) =Mtors, so M/Mtors

∼= Ar.

If r = 0 then a ∈ Ann(M) if and only if

0 = a(1, 0, . . . , 0) = a(0, 1, 0, . . . , 0) = · · · = a(0, 0, . . . , 1),

which holds precisely when a ∈ (a1)∩· · ·∩(an) = (an). Hence Ann(M) = (an).
If r 6= 0 then Ann(M) = 0 since no element kills all of Ar.



Problem 2.

Give an example of an integral domain which is not integrally closed. Justify
your answer.

Solution.
The ring Z[

√
−3] is not integrally closed: its fraction field is Q(

√
−3), and ζ3 /∈

Z[
√
−3] is integral over Z[

√
−3] because it satisfies the equation ζ23 + ζ3 + 1 = 0.



Problem 3.

Let A be a subring of B, with B integral over A. Prove that B× ∩A = A×. Show
this is false in general without the integrality hypothesis.

Solution.
Clearly A× ⊂ B×. Let x ∈ B× ∩ A. Then x has an inverse x−1 ∈ B. As B is

integral over A, the inverse satisfies an equation of integral dependence

x−n + an−1x
−(n−1) + an−2x

−(n−2) + · · ·+ a1x
−1 + a0 = 0

for a0, a1, . . . , an−1 ∈ A. Multiplying by xn−1 and rearranging, we have

x−1 = −
(
an−1 + an−2x+ · · ·+ a1x

n−2 + a0x
n−1) ∈ A.

Without the integrality hypothesis, we have Z ⊂ Q, and Q× ∩ Z = Z \ {0},
whereas Z× = {±1}.



Problem 4.

Let x be a cube root of 2 and let K = Q(x). This is a cubic extension of Q.

i. Let z = a + bx + cx2 ∈ K for a, b, c ∈ Q. Find the conjugates of z in C.
Calculate the trace, norm, and characteristic polynomial of z over Q.

ii. Show that Z[x] ⊂ OK , find a basis for Z[x] as a Z-module, and show that
Frac(Z[x]) = K.

iii. Show that 6OK ⊂ Z[x]. [Let z = a+bx+cx2 ∈ OK for a, b, c ∈ Q. Calculate
the traces of z, xz, and x2z.]

Solution.

i. The conjugates of z are the images of z under the three Q-embeddings σ1, σ2, σ3
of K into C. We may take σ1(x) = x, σ2(x) = ζ3x, and σ3(x) = ζ23x, the roots
of the minimal polynomial X3 − 2 of x. Therefore the conjugates of z are

z, a+ bxζ3 + cxζ23 , a+ bxζ23 + cx2ζ3.

Note that these are the same number if and only if z ∈ Q. The matrix for
multiplication by z is given in the basis 1, x, x2 by

mz =

a 2c 2b
b a 2c
c b a

 .
Hence

Tr(z) = Tr(mz) = 3a and N(z) = det(mz) = a3 + 2b3 + 4c3 − 6abc.

The characteristic polynomial is

det(XI3 −mz) = X3 − Tr(z)X2 + (3a2 − 6bc)X +N(z).

ii. Since x satisfies x3 − 2 = 0, we have x ∈ OK; clearly Z ⊂ OK , so Z[x] ⊂ OK .
Repeatedly substituting x3 = 2 into any integer polynomial in x shows that
1, x, x2 span Z[x]. As 1, x, x2 are linearly independent in K, they are linearly
independent in Z[x], so they are a basis. Since Z[x] ⊂ K we have Frac(Z[x]) ⊂
K. Any element ofK has the form z = a+bx+cx2 for a, b, c ∈ Q; if n ∈ Z clears
the denominators of a, b, c, then nz ∈ Z[x]. Hence z = (nz)/n ∈ Frac(Z[x]), so
K ⊂ Frac(Z[x]).

iii. Let z = a + bx + cx2 ∈ OK for a, b, c ∈ Q. Then Tr(z) = 3a, Tr(xz) = 6c, and
Tr(x2z) = 6b. On the other hand, z, xz, x2z ∈ OK , so their traces are integers.
Thus 6z ∈ Z[x].



Problem 5.

Let A be a subring of a ring C such that C ∼= An as A-modules, and let B ⊂ C
be a subring containing A, so A ⊂ B ⊂ C. Suppose that A is a principal ideal
domain.

i. Show that B is a finitely generated free A-module.

ii. Suppose that B also has rank n. Let x1, . . . , xn ∈ B and y1, . . . , yn ∈ C be
bases. Prove that

D(x1, . . . , xn) = D(y1, . . . , yn) · d2

for some d ∈ A.

iii. Conclude that if D(x1, . . . , xn) is nonzero and squarefree then B = C.

Solution.

i. First note that B is a submodule of the finitely generated free A-module C.
Since A is noetherian, B is itself finitely generated, so there exists a surjection
Am � B. Let M be the matrix for the composition ϕ : Am → B ↪→ C ∼= An.
Since M has a Smith normal form, there exist bases x1, . . . , xm for Am and
y1, . . . , yn for An such that ϕ(xi) = aiyi for 1 ≤ i ≤ min{n,m} and ai ∈ A, and
such that ϕ(xi) = 0 for i > n. It follows that B is free and that some subset of
x1, . . . , xm map to a basis for B.

ii. When B has rank n, the argument in (i) shows that there exist bases x1, . . . , xn
for B and y1, . . . , yn for C and scalars a1, . . . , an ∈ A such that aiyi = xi for all
i. Hence

D(x1, . . . , xn) = det(Tr(xixj)) = det(aiaj Tr(yiyj))

= det

a1 · · · 0
... . . . ...
0 · · · an

 det(Tr(yiyj)) det

a1 · · · 0
... . . . ...
0 · · · an


= D(y1, . . . , yn) · (a1 · · · an)2.

We showed in class that if y′1, . . . , y
′
n (resp. x′1, . . . , x

′
n) is another basis for C

(resp. B), then D(y′1, . . . , y
′
n) (resp. D(x′1, . . . , x

′
n)) differs from D(y1, . . . , yn)

(resp. D(x1, . . . , xn)) by the square of a unit in A, so

D(x′1, . . . , x
′
n) = D(y′1, . . . , y

′
n) · (a1 · · · an)2u2

for u ∈ A×.

iii. IfD(x1, . . . , xn) is nonzero and squarefree then d ∈ A× since d2 | D(x1, . . . , xn).
Hence each ai is a unit, so x1, . . . , xn and y1, . . . , yn have the same span. It fol-
lows that B = C.



[Scratch work]


