Math 6421 Homework 2

Due at the beginning of class on Friday, September 4.

In the following exercises, the ground field, if unspecified, is a general algebraically closed field K.

- (1) Let $J = (x^2 + y^2 1, x 1) \subset K[x, y]$. Find a set of generators for the ideal $I(V(J)) = \sqrt{J}$. Is $\sqrt{J} = J$?
- (2) Let *X* be an affine variety.
 - (a) Show that the coordinate ring A(X) is a field if and only if X consists of a single point.
 - (b) Show that if X consists of two points, then $A(X) \cong K \times K$ as rings.
- (3) Let $X \subset \mathbf{A}^n$ be an arbitrary subset. Prove that $V(I(X)) = \overline{X}$, the closure of X in the Zariski topology.
- (4) Find the irreducible components of the following affine varieties:
 (a) X = V(x yz, xz y²) ⊂ A³.
 (b) Y = V(x² + y² + z², x² y² z² + 1) ⊂ A³.
 Here you may assume K does not have characteristic 2.
- (5) Let $X \subset \mathbf{A}^n$ and $Y \subset \mathbf{A}^m$ be irreducible affine varieties. Prove that $X \times Y$ is irreducible.
- (6) Let $M_{2\times3}(K)$ be the space of 2×3 matrices with entries in K. We identify $M_{2\times3}(K)$ with \mathbf{A}_{K}^{6} in the obvious way. Let $X \subset M_{2\times3}(K)$ be the set of all matrices with rank at most 1. Prove that X is an affine variety. Is it irreducible? What is its dimension?