Math 6421 Homework 5

Due at the beginning of class on Friday, September 25.

In the following exercises, the ground field, if unspecified, is a general algebraically closed field K.

(1) Let $f: X \to Y$ be a continuous map of topological spaces, let \mathscr{F} be a sheaf on X, and for $U \subset Y$ define

$$(f_*\mathscr{F})(U) \coloneqq \mathscr{F}(f^{-1}(U)).$$

Show that $f_*\mathscr{F}$ is a sheaf on *Y*. It is called the *pushforward sheaf*.

(2) Let X be an affine variety in \mathbf{A}^n and let $x \in X$. Give a natural isomorphism of K-algebras

$$\mathscr{O}_{X,x} \xrightarrow{\sim} \mathscr{O}_{\mathbf{A}^n,x} / I(X) \mathscr{O}_{\mathbf{A}^n,x}.$$

(Here $I(X) \mathscr{O}_{\mathbf{A}^n, x}$ is the ideal in $\mathscr{O}_{\mathbf{A}^n, x}$ generated by the image of I(X).)

- (3) Let X be an affine variety, let A = A(X), and let $\mathfrak{X} = \text{Spec}(A)$. Identifying X with Max(A), we have $X \subset \mathfrak{X}$.
 - (a) Prove that $\mathfrak{Y} \mapsto \mathfrak{Y} \cap X$ is a bijection from the set of closed subsets of \mathfrak{X} to the set of closed subsets of X. [Use the Nullstellensatz.] Prove the same statement for open sets.
 - (b) Let $\mathfrak{U} \subset \mathfrak{X}$ be an open set and let $U = \mathfrak{U} \cap X$. Give a canonical identification $\mathscr{O}_{\mathfrak{X}}(\mathfrak{U}) \cong \mathscr{O}_X(U)$. [What happens for basic open subsets?]

Therefore, the construction of the structure sheaf on an affine scheme generalizes the construction of regular functions on an affine variety.

- (4) Let X be a topological space and let 𝔅,𝔅 be sheaves of abelian groups on X. A sheaf morphism is a collection of homomorphisms f_U: 𝔅(U) → 𝔅(U) for open subsets U ⊂ X such that, for V ⊂ U and s ∈ 𝔅(U), we have f_U(s)|_V = f_V(s|_V). The kernel of f is defined to be the presheaf ker(f): U ↦ ker(f_U).
 - (a) Prove that ker(f) is a sheaf.
 - (b) For $x \in X$, prove that f induces a natural homomorphism on stalks $f_x : \mathscr{F}_x \to \mathscr{G}_x$, and show that $\ker(f)_x = \ker(f_x)$.
 - (c) Prove that f is injective if and only if f_x is injective for all $x \in X$.