Math 6421 Homework 6

Due at the beginning of class on Friday, October 2.

In the following exercises, the ground field, if unspecified, is a general algebraically closed field K.

- (1) Let $X = \text{Spec}(\mathbf{Z}[x])$ and let $U = D(x) \cup D(2)$. Compute $\mathscr{O}_X(U)$.
- (2) An *affine conic* in A^2 is the zero locus of a single irreducible polynomial $f \in K[x, y]$ of degree 2.
 - (a) Prove that $V(x y^2) \cong \mathbf{A}^1$ and $V(xy 1) \cong \mathbf{A}^1 \setminus \{0\}$.
 - (b) Prove that $V(xy-1) \not\cong V(x-y^2)$.
 - (c) Assume $\operatorname{char}(K) \neq 2$. Prove that every affine conic $X \subset \mathbf{A}^2$ is isomorphic to \mathbf{A}^1 or to $\mathbf{A}^1 \setminus \{0\}$. [First show that there exist either one or two lines L through the origin such that all translates of L meet X in at most one point. Then choose v perpendicular to L, and consider $(L + av) \cap X$ for $a \in \mathbf{A}^1$.]
- (3) Let $f: X \to Y$ be a morphism of affine varieties and let $f^*: A(Y) \to A(X)$ be the corresponding homomorphism of coordinate rings. Are the following statements true or false? Give a proof or counterexample.
 - (a) f is surjective implies f^* is injective.
 - (b) f^* is injective implies f is surjective.
 - (c) f is injective implies f^* is surjective.
 - (d) f^* is surjective implies f is injective.
- (4) Let X and Y be affine varieties, let A = A(X) and B = A(Y), let X = Spec(A) and 𝔅 = Spec(B), and let g: B → A be a K-algebra homomorphism. Let f: X → Y be the associated morphism of varieties, and let f': X → 𝔅 be the associated morphism of ringed spaces, defined on sets by f'(𝔅) = g⁻¹(𝔅).
 - (a) Prove that f' maps $X = Max(A) \subset \mathfrak{X}$ into $Y = Max(B) \subset \mathfrak{Y}$.
 - (b) Prove that f coincides with the restriction of f' to X.
 - (c) Let $\mathfrak{U} \subset \mathfrak{Y}$ be open and let $U = \mathfrak{U} \cap Y$. Prove that $(f')^{\sharp} \colon \mathscr{O}_{\mathfrak{Y}}(\mathfrak{U}) \to \mathscr{O}_{\mathfrak{X}}(f'^{-1}\mathfrak{U})$ is precomposition with f, under the identifications $\mathscr{O}_{\mathfrak{Y}}(\mathfrak{U}) = \mathscr{O}_Y(U)$ and $\mathscr{O}_{\mathfrak{X}}(f'^{-1}\mathfrak{U}) = \mathscr{O}_X(f^{-1}U)$. (See problem (3) on the previous homework.)