Math 6421 Homework 8

Due at the beginning of class on Friday, October 16.

In the following exercises, the ground field, if unspecified, is a general algebraically closed field *K*.

- (1) Let X be a prevariety and let $Y \subset X$ be a locally closed subprevariety.

 - (a) Show that for all y ∈ Y, the map on stalks O_{X,y} → O_{Y,y} is surjective.
 (b) Prove that Y is open if and only if, for all y ∈ Y, the map on stalks $\mathscr{O}_{X,y} \to \mathscr{O}_{Y,y}$ is an isomorphism.
- (2) In class we constructed the projective plane \mathbf{P}^2 as $X_1 \cup X_2 \cup X_3$, where $X_i = \mathbf{A}^2$ with coordinates x_i, y_i , and where

$$x_2 = \frac{1}{x_1}$$
 $y_2 = \frac{y_1}{x_1}$ $x_3 = \frac{1}{y_1}$ $y_3 = \frac{x_1}{y_1}$.

Let $Y_1 = V(y_1^2 = (x_1 - 1)(x_1 - 2)(x_1 - 3))$. Construct a closed subvariety $Y \subset \mathbf{P}^2$ such that $Y \cap X_1 = Y_1$ and $Y \setminus X_1$ is one point.

(3) Let *X* be a topological space.

- (a) Show that X is Hausdorff if and only if the diagonal $\Delta_X = \{(x, x) \mid x \in X\}$ X is closed in $X \times X$ in the product topology.
- (b) Let $f: X \to Y$ be a continuous map of topological spaces and let $s: Y \to X$ be a section, i.e. a continuous map such that $f \circ s = \mathrm{Id}_Y$. Prove that $s(Y) = ((s \circ f) \times \mathrm{Id}_X)^{-1}(\Delta_X)$. Conclude that s(Y) is closed when X is Hausdorff.
- (c) Let $f: X \to Y$ be a continuous map of topological spaces and let $\Gamma_f =$ $\{(x, f(x)) \mid x \in X\} \subset X \times Y$, the graph of f. Use (b) to prove that Γ_f is closed when X is Hausdorff.

The point of this exercise is to demonstrate that many formal properties of Hausdorff spaces follow directly from condition (a), hence will apply to separated prevarieties.