Math 6421 Homework 9

Due at the beginning of class on Friday, October 23.

In the following exercises, the ground field, if unspecified, is a general algebraically closed field K.

- **1.** Let *X* be a prevariety and let $\Delta_X = \{(x, x) \mid x \in X\}$ be the diagonal.
 - **a)** Prove that Δ_X is a locally closed subvariety of $X \times X$.
 - **b)** Define $\delta_X \colon X \to X \times X$ by $\delta_X(x) = (x, x)$. Prove that δ_X is an isomorphism of X onto Δ_X .
 - c) Conclude that X is separated if and only if δ_X is a closed immersion.
- **2.** Let *X* and *Y* be varieties. Show that $X \times Y$ is separated.
- **3.** Let *X* be a variety and let $U, V \subset X$ be affine open subsets. Show that $U \cap V$ is affine.
- **4.** Let *X* be the 2-point compactification of $V(y^2 = (x-1)(x-2)(x-3)(x-4)) \subset \mathbf{A}^2$ constructed in Gathmann, Example 5.6. Prove that *X* is separated.
- **5.** Let *X* be a scheme, let $Y \subset X$ be a closed subset, and define a sheaf of ideals \mathscr{I} as in class by

$$\mathscr{I}(U) = \{ a \in \mathscr{O}_X(U) \mid a_y \in I_y \text{ for all } y \in Y \cap U \}.$$

a) Prove that \mathscr{I} is quasi-coherent: that is, for all affine open subsets $U = \operatorname{Spec}(A) \subset X$ and all $f \in A$, we have $\mathscr{I}(D(f)) = \mathscr{I}(U)_f := \mathscr{I}(U)A_f$ inside $A_f = \mathscr{O}_X(D(f))$.

Hence there is a unique closed immersion $g: Y' \hookrightarrow X$ such that $\mathscr{I} = \ker(g^{\sharp})$.

b) Show that the set underlying Y' is Y.

Identifying Y with Y', we have thus promoted Y to a closed subscheme of X.

c) Prove that Y is *reduced*: i.e. that the structure sheaf \mathcal{O}_Y has no nilpotent elements.

We call *Y* the reduced induced closed subscheme.