Math 6421 Homework 10

Due at the beginning of class on Friday, October 30.

Definition. Let $X \to S$ be an *S*-scheme, and let $S' \to S$ be a morphism. We call $X' := X \times_S S'$ the *base change* of X to S'; it is an S'-scheme via the second projection.

This is a psychologically useful bit of alternate terminology for a fiber product. The following lemmas about fiber products (proved in class) will be needed in the problems below.

Lemma 1. Let $f: Y \to X$ be a morphism of S-schemes and let $S' \to S$ be a morphism. Then the square

is Cartesian.

Lemma 2 (Fiber products are compatible with change of base). Let X and Y be S-schemes, and let $S' \to S$ be a morphism. Let $X' = X \times_S S'$ and $Y' = Y \times_S S'$ be the base changes. Then the square

$$\begin{array}{ccc} X' \times_{S'} Y' \longrightarrow S' \\ (f,g) & & \downarrow \\ X \times_S Y \longrightarrow S \end{array}$$

is Cartesian, where $f: X' \to X$ and $g: Y' \to Y$ are projection onto the first coordinate.

- a) Let f: X → S be a morphism of schemes, let s ∈ S, and define X_s ≔ Spec(κ(s)) ×_S X, where κ(s) is the residue field of s (cf. homework 7, problem 2). Prove that the projection X_s → X induces a homeomorphism of the topological space underlying X_s onto f⁻¹(s) in its induced topology. Hence f⁻¹(s) naturally has the structure of a scheme; we call it the *fiber* over s. [Note that f⁻¹(s) need not be closed in X if {s} is not closed in S.]
 - **b)** Now let X and Y be S-schemes, and let $s \in S$. Prove that $(X \times_S Y)_s = X_s \times_{\text{Spec }\kappa(s)} Y_s$. In other words, the fiber product of schemes is fiberwise a fiber product over a field.
- **2.** Let *X* and *Y* be *S'*-schemes, and let $S' \to S$ be a morphism. Define a natural morphism $f: X \times_{S'} Y \to X \times_S Y$, and prove that *f* is a closed immersion.
- **3.** For a scheme Z we let |Z| denote the topological space underlying Z. Let X and Y be S-schemes.
 - a) Define a natural map of sets

$$f\colon |X\times_S Y|\longrightarrow |X|\times_{|S|}|Y|,$$

where the right hand side is the fiber product in the category of sets.

- **b)** Prove that f is surjective. [Use homework 7, problem 2. If k_1 and k_2 are field extensions of k, why is $k_1 \otimes_k k_2$ not the zero ring?]
- c) Give an example to show that *f* may fail to be injective.
- **4.** Let \mathscr{P} be a property of morphisms of schemes such that:
 - (1) a closed immersion has \mathscr{P} ;
 - (2) a composition of two morphisms having \mathcal{P} has \mathcal{P} ; and
 - (3) 𝒫 is stable under base extension, in that if X → S has 𝒫 and S' → S is a morphism then the base change X ×_S S' → S' has 𝒫.
 Prove that:

Prove that:

- a) A product of morphisms having \mathscr{P} has \mathscr{P} : that is, if $f_i \colon X_i \to Y_i$ for i = 1, 2are morphisms of S-schemes and f_1, f_2 have \mathscr{P} , then $(f_1, f_2) \colon X_1 \times_S X_2 \to Y_1 \times_S Y_2$ has \mathscr{P} .
- **b)** If $X \to S$ and $Y \to S$ have \mathscr{P} then $X \times_S Y \to S$ has \mathscr{P} .
- c) If $f: Y \to X$ and $g: X \to S$ are two morphisms, and if $g \circ f$ has \mathscr{P} and g is separated, then f has \mathscr{P} . [First show that the graph morphism $\Gamma_f = \operatorname{Id}_Y \times f: Y \to Y \times_S X$ is obtained by base extension from the diagonal morphism $\Delta: X \to X \times_S X$. Also see homework 8, problem 3.]
- **5.** Let *X* and *Y* be separated *S*-schemes and let $f: X \to Y$ be a morphism. Show that *f* is separated.