

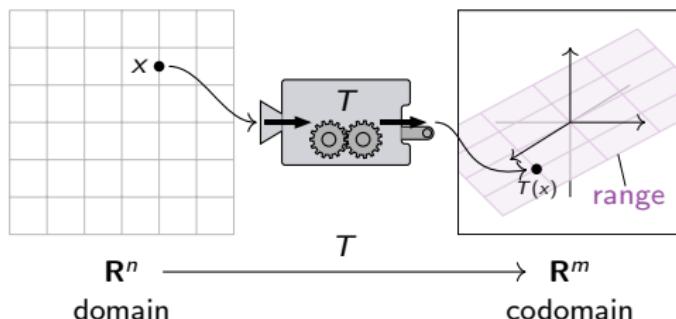
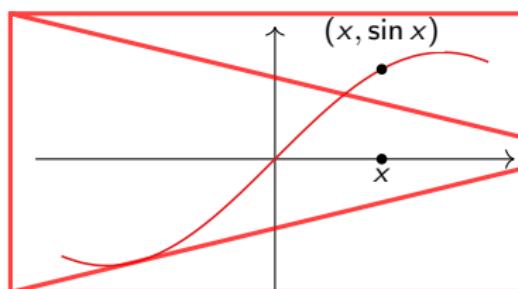
- ▶ Please complete the mid-semester CIOS survey this week.
- ▶ The first midterm will take place during recitation **a week from Friday**, September 30. It covers Chapter 1, sections 1–5 and 7–9.
- ▶ Homeworks 1.5, 1.7, 1.8 are due Friday.
 - ▶ There are three this week so that there can be two next week, the week of the midterm.
- ▶ Quiz on Friday: sections 1.5 and 1.7.
- ▶ My office hours are Wednesday, 1–2pm and Thursday, 3:30–4:30pm, in Skiles 221.
 - ▶ I'll have extra office hours next week.
 - ▶ As always, TAs' office hours are posted on the website.
 - ▶ Also there are links to other resources like Math Lab.

Transformations

Review from last time

Definition

A **transformation** (or **function** or **map**) from \mathbf{R}^n to \mathbf{R}^m is a rule T that assigns to each vector x in \mathbf{R}^n a vector $T(x)$ in \mathbf{R}^m .



You may be used to thinking of a function in terms of its graph. But for a function from \mathbf{R}^m to \mathbf{R}^n , the graph needs $m + n$ dimensions, so it's hard to visualize and draw. We won't be graphing most of the transformations in this class.

Matrix Transformations

Most of the transformations we encounter in this class will come from a matrix.

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$T: \mathbf{R}^n \longrightarrow \mathbf{R}^m \quad \text{defined by} \quad T(x) = Ax.$$

In other words, T takes the vector x in \mathbf{R}^n to the vector Ax in \mathbf{R}^m .

- ▶ The *domain* of T is \mathbf{R}^n , which is the number of columns of A .
- ▶ The *codomain* of T is \mathbf{R}^m , which is the number of rows of A .
- ▶ The *range* of T is the set of all images of T :

$$T(x) = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1 v_1 + x_2 v_2 + \cdots + x_n v_n.$$

This is the column span of A .

Matrix Transformations

Example

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbf{R}^2 \rightarrow \mathbf{R}^3$.

- If $u = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ then $T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}$.
- Let $b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}$. Find v in \mathbf{R}^2 such that $T(v) = b$. Is there more than one?

We want to find v such that $Av = b$. We know how to do that:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} v = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \xrightarrow{\text{augmented matrix}} \left(\begin{array}{cc|c} 1 & 1 & 7 \\ 0 & 1 & 5 \\ 1 & 1 & 7 \end{array} \right) \xrightarrow{\text{row reduce}} \left(\begin{array}{cc|c} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{array} \right).$$

This gives $x = 2$ and $y = 5$, or $v = \begin{pmatrix} 2 \\ 5 \end{pmatrix}$ (unique). In other words,

$$T(v) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}.$$

Matrix Transformations

Example, continued

Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbf{R}^2 \rightarrow \mathbf{R}^3$.

- ▶ Is there any c in \mathbf{R}^3 such that there is more than one $w \in \mathbf{R}^2$ with $T(w) = c$?

Translation: is there any c in \mathbf{R}^3 such that the solution set for $Ax = c$ has more than one vector w in it?

The solution set to $Ax = b$ has only one vector v . This is a translate of the solution set to $Ax = 0$. So is the solution set to $Ax = c$. So no!

- ▶ Find c such that there is *no* v with $T(v) = c$.

Translation: Find c such that $Ax = c$ is inconsistent.

Translation: Find c not in the column span of A (i.e., the range of T).

We could draw a picture, or notice: $a \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} a+b \\ b \\ a+b \end{pmatrix}$. So

anything in the column span has the same first and last coordinate. So $c = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ is not in the column span.

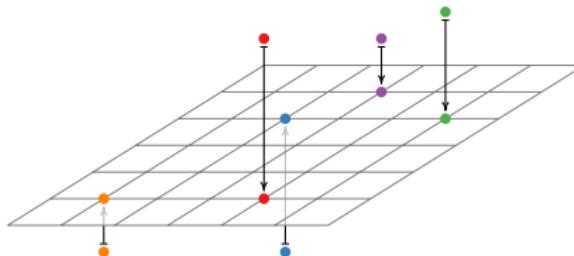
Matrix Transformations

Geometric example

Let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$. Then

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.$$

This is *projection onto the xy-axis*. Picture:



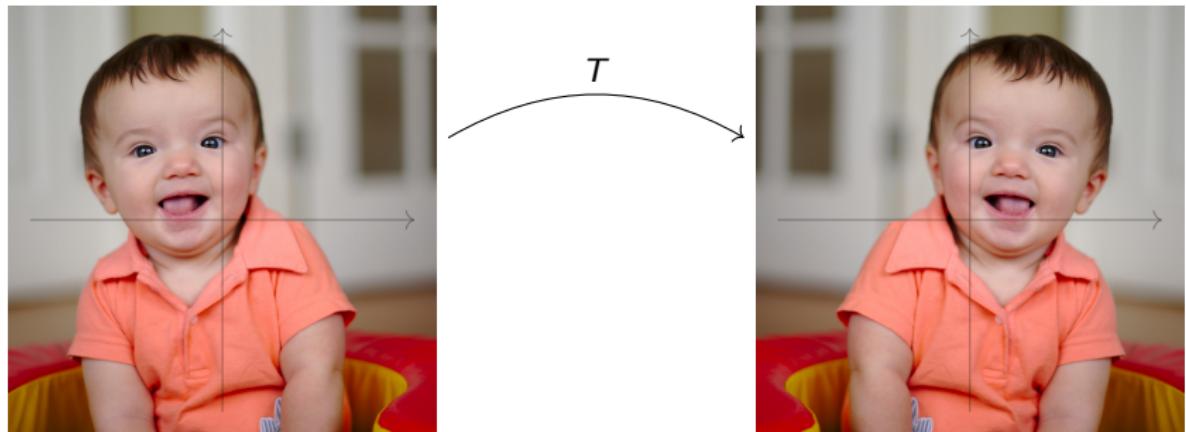
Matrix Transformations

Geometric example

Let $A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$. Then

$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.$$

This is *reflection over the y-axis*. Picture:

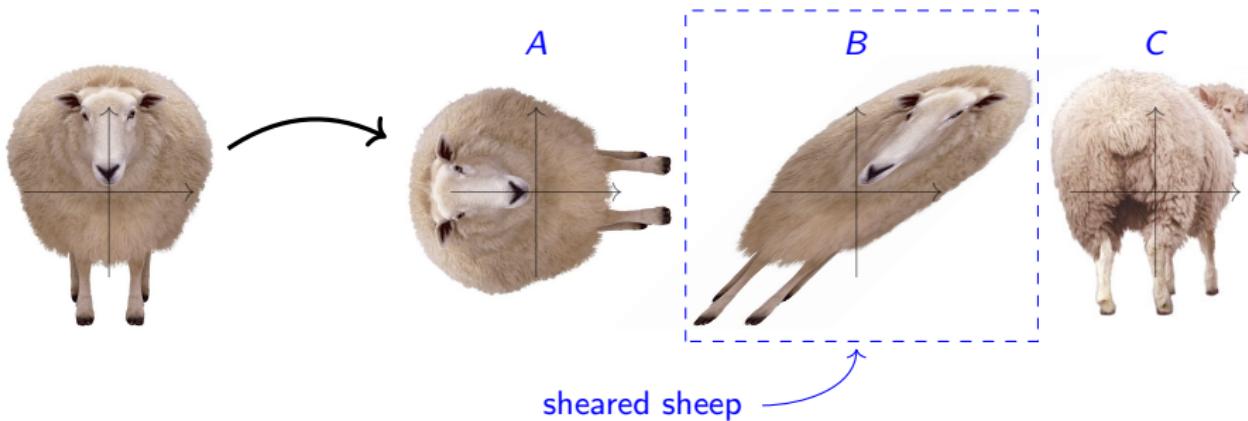


Let $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and let $T(x) = Ax$, so $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$. (T is called a **shear**.)

Poll

What does T do to this sheep?

Hint: first draw a picture what it does to the box *around* the sheep.



Linear Transformations

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

$$A(u + v) = Au + Av \quad A(cv) = cAv.$$

So if $T(x) = Ax$ is a matrix transformation then,

$$T(u + v) = T(u) + T(v) \quad T(cv) = cT(v).$$

This property is so special that it has its own name.

Definition

A transformation $T: \mathbf{R}^n \rightarrow \mathbf{R}^m$ is **linear** if it satisfies the above [equations](#) for all vectors u, v in \mathbf{R}^n and all scalars c .

In other words, T “respects” addition and scalar multiplication.

Check: if T is linear, then

$$T(0) = 0 \quad T(cu + dv) = cT(u) + dT(v)$$

for all vectors u, v and scalars c, d . More generally,

$$T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$$

In engineering this is called **superposition**.

Linear Transformations

Dilation

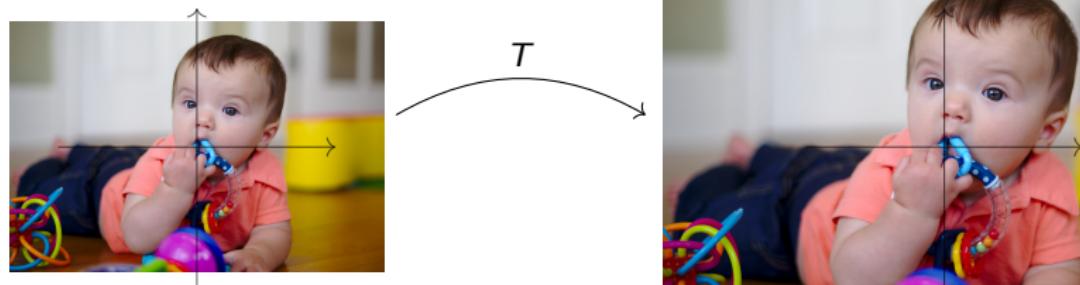
Define $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ by $T(x) = 1.5x$. Is T linear? Check:

$$T(u + v) = 1.5(u + v) = 1.5u + 1.5v = T(u) + T(v)$$

$$T(cv) = 1.5(cv) = c(1.5v) = c(Tv).$$

So T satisfies the two equations, hence T is linear.

This is called **dilation** or **scaling** (by a factor of 1.5). Picture:



Linear Transformations

Rotation

Define $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ by

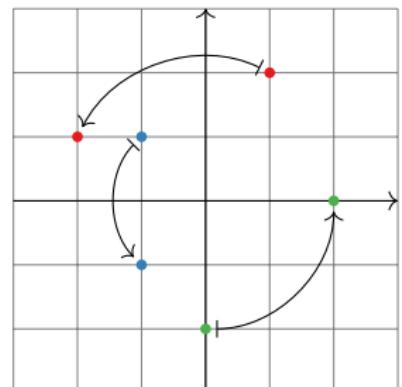
$$T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.$$

Is T linear? Check:

$$T \left(\begin{pmatrix} u_1 \\ u_2 \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) = \begin{pmatrix} -u_2 \\ u_1 \end{pmatrix} + \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix} = \begin{pmatrix} -(u_2 + v_2) \\ (u_1 + v_1) \end{pmatrix} = T \begin{pmatrix} u_1 + u_2 \\ v_1 + v_2 \end{pmatrix}$$

$$T \left(c \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \right) = T \begin{pmatrix} cv_1 \\ cv_2 \end{pmatrix} = \begin{pmatrix} -cv_2 \\ cv_1 \end{pmatrix} = c \begin{pmatrix} -v_2 \\ v_1 \end{pmatrix} = cT \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}.$$

So T satisfies the two equations, hence T is linear. This is called **rotation** (by 90°). Picture:



Section 1.9

The Matrix of a Linear Transformation

Linear Transformations are Matrix Transformations

Definition

The **unit coordinate vectors** in \mathbf{R}^n are

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{pmatrix}, \quad \dots, \quad e_{n-1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \\ 0 \end{pmatrix}, \quad e_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}.$$

Recall: A matrix A defines a linear transformation T by $T(x) = Ax$.

Theorem

Let $T: \mathbf{R}^n \rightarrow \mathbf{R}^m$ be a linear transformation. Let

$$A = \begin{pmatrix} | & | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | & | \end{pmatrix}.$$

This is an $m \times n$ matrix, and T is the matrix transformation for A : $T(x) = Ax$.

In particular, *every linear transformation is a matrix transformation*.

The matrix A is called the **standard matrix** for T .

Linear Transformations are Matrix Transformations

Continued

Why? Suppose for simplicity that $T: \mathbf{R}^3 \rightarrow \mathbf{R}^2$.

$$\begin{aligned} T \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= T \left(x \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + y \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + z \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right) \\ &= T(xe_1 + ye_2 + ze_3) \\ &= xT(e_1) + yT(e_2) + zT(e_3) \\ &= \begin{pmatrix} | & | & | \\ T(e_1) & T(e_2) & T(e_3) \\ | & | & | \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ &= A \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \end{aligned}$$

So when we think of a matrix as a function from \mathbf{R}^n to \mathbf{R}^m , it's the same as thinking of a linear transformation.

Linear Transformations are Matrix Transformations

Example

We defined the **dilation** transformation $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ by $T(x) = 1.5x$. What is its standard matrix?

$$\left. \begin{array}{l} T(e_1) = 1.5e_1 = \begin{pmatrix} 1.5 \\ 0 \end{pmatrix} \\ T(e_2) = 1.5e_2 = \begin{pmatrix} 0 \\ 1.5 \end{pmatrix} \end{array} \right\} \Rightarrow A = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix}.$$

Check:

$$\begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix} = T \begin{pmatrix} x \\ y \end{pmatrix}.$$

Linear Transformations are Matrix Transformations

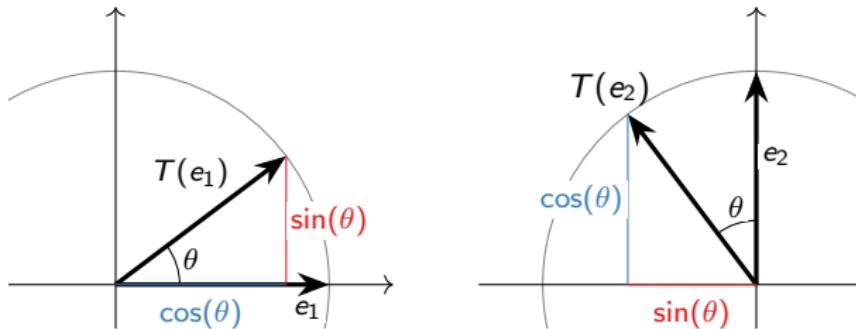
Example

Question

What is the matrix for the linear transformation $T: \mathbf{R}^2 \rightarrow \mathbf{R}^2$ defined by

$T(x) = x$ rotated counterclockwise by an angle θ ?

(Check linearity...)



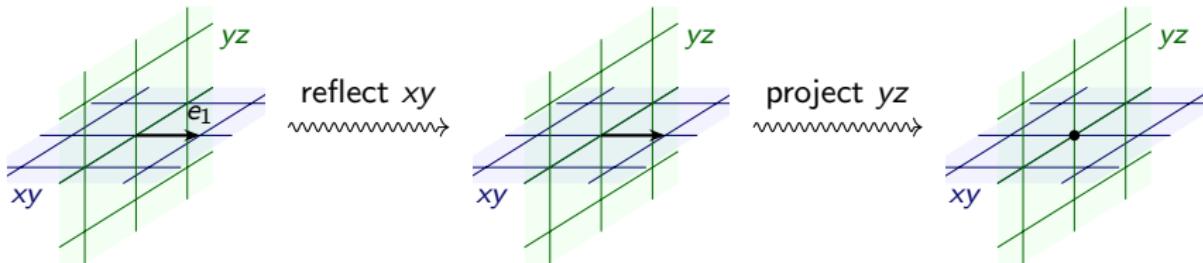
$$\left. \begin{array}{l} T(e_1) = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix} \\ T(e_2) = \begin{pmatrix} -\sin(\theta) \\ \cos(\theta) \end{pmatrix} \end{array} \right\} \implies A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \quad \left(\begin{array}{l} \theta = 90^\circ \implies \\ A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \end{array} \right)$$

Linear Transformations are Matrix Transformations

Example

Question

What is the matrix for the linear transformation $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$ that reflects through the xy -plane and then projects onto the yz -plane?



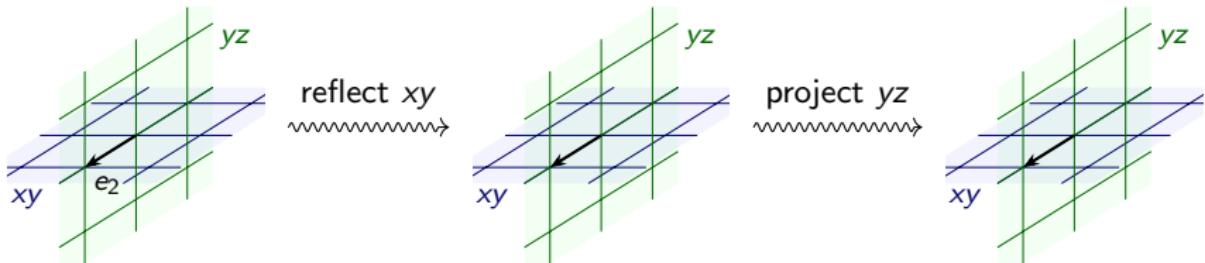
$$T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$ that reflects through the xy -plane and then projects onto the yz -plane?



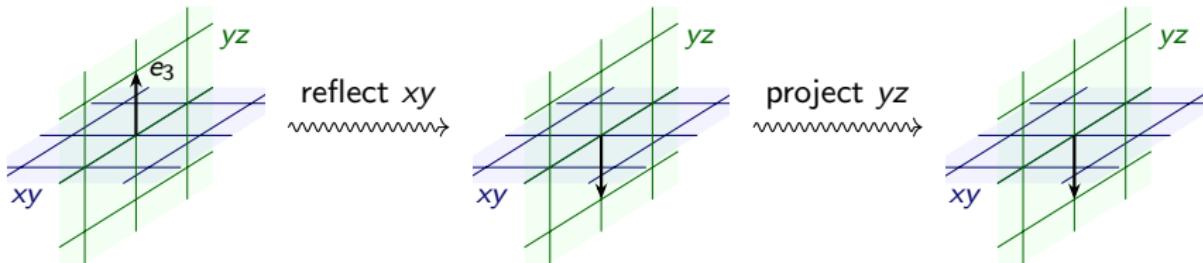
$$T(e_2) = e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}.$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$ that reflects through the xy -plane and then projects onto the yz -plane?



$$T(e_3) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}.$$

Linear Transformations are Matrix Transformations

Example, continued

Question

What is the matrix for the linear transformation $T: \mathbf{R}^3 \rightarrow \mathbf{R}^3$ that reflects through the xy -plane and then projects onto the yz -plane?

$$\left. \begin{array}{l} T(e_1) = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ T(e_2) = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \\ T(e_3) = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \end{array} \right\} \Rightarrow A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Other Geometric Transformations

There is a long list of geometric transformations of \mathbf{R}^2 in §1.9 of Lay. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, . . .) Please look them over.