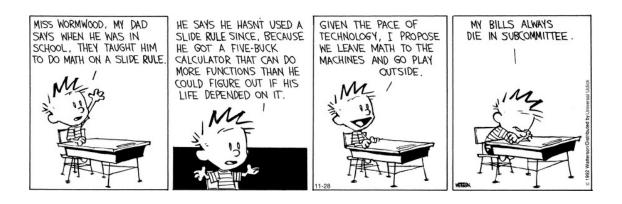
MATH 1553-A MIDTERM EXAMINATION 1

Name		Section	
------	--	---------	--

Please **read all instructions** carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, calculator, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!



Scoring Page

Please do not write on this page.

1	2	3	4	5	Total

Problem 1.

In parts (c) and (e), *A* denotes an $m \times n$ matrix (*m* rows and *n* columns), and in (e), *b* is a vector in \mathbb{R}^m . In (b)–(e), circle **T** if the statement is necessarily true, and circle **F** otherwise.

a) What is the best way to describe the solution set of the equation x + 2y - z = 0?

a line in \mathbf{R}^2 a line in \mathbf{R}^3 a plane in \mathbf{R}^2 a plane in \mathbf{R}^3 Т F The following matrix has three pivots: b) Т F It is possible for the matrix equation Ax = 0 to be inconsistent. c) Т F The following matrix corresponds to a linear system with one free d) variable: e) Т F The solution set of Ax = b is empty or it is a translate of a span in \mathbf{R}^m .

Solution.

- a) The variables y and z are free, so the solution set is a plane. The total number of variables is 3, so it's a plane in \mathbb{R}^3 .
- **b)** True. The entries with 1 and 15 are all pivots.
- c) False. The zero vector is a solution.
- d) True. There is one (non-augmented) column without a pivot.
- e) False. It is empty or it is a translate of a span in \mathbf{R}^n .

Problem 2.

Consider the following system of linear equations:

- 2x + y + 12z = 1x + 2y + 9z = -1.
- a) [1 point] Write the system as a vector equation.
- **b)** [1 point] Write the system as a matrix equation.
- c) [1 point] Write the system as an augmented matrix.
- d) [4 points] Find the solution set in parametric vector form.
- e) [3 points] Draw a picture of the solution set.

Solution.

a) $x \begin{pmatrix} 2 \\ 1 \end{pmatrix} + y \begin{pmatrix} 1 \\ 2 \end{pmatrix} + z \begin{pmatrix} 12 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ **b)** $\begin{pmatrix} 2 & 1 & 12 \\ 1 & 2 & 9 \end{pmatrix} x = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ **c)** $\begin{pmatrix} 2 & 1 & 12 \\ 1 & 2 & 9 \\ -1 \end{pmatrix}$

d) After row reduction, we obtain the augmented matrix

$$\left(\begin{array}{rrrr|rrr} 1 & 0 & 5 & 1 \\ 0 & 1 & 2 & -1 \end{array}\right).$$

This translates into the equations

$$\begin{array}{rrrr} x & +5z = 1 \\ y + 2z = -1. \end{array}$$

The only free variable is *z*; the corresponding parametric form is

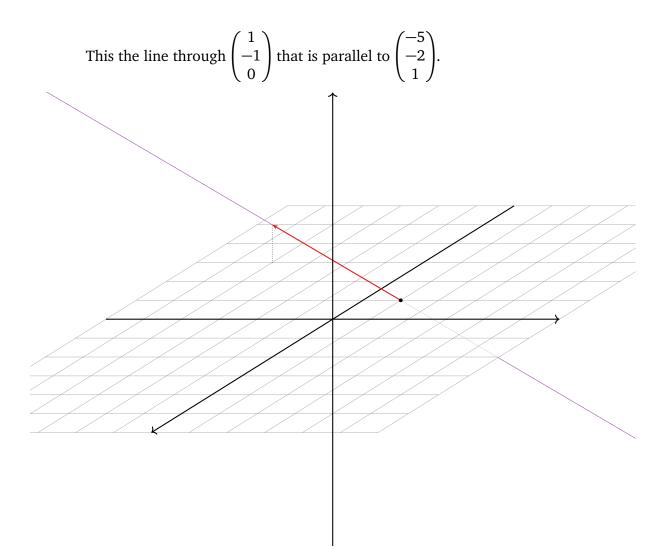
$$x = -5z + 1$$
$$y = -2z - 1$$
$$z = z.$$

The parametric vector form is thus

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = z \begin{pmatrix} -5 \\ -2 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

e) The solution set can be written

$$\operatorname{Span}\left\{\begin{pmatrix}-5\\-2\\1\end{pmatrix}\right\} + \begin{pmatrix}1\\-1\\0\end{pmatrix}.$$



Problem 3.

Consider the following vectors:

$$v_1 = \begin{pmatrix} 17 \\ -3 \\ 24 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 7/2 \\ 0 \\ \pi \end{pmatrix}.$$

a) [4 points] Describe Span{ v_1, v_2 } geometrically: "it is a in **R**."

b) [6 points] Find a matrix *A* with three rows, with the property that the matrix equation Ax = b is consistent if and only if *b* is in Span{ v_1, v_2 }.

Solution.

a) Since v_1 and v_2 are noncollinear vectors in \mathbf{R}^3 , they span a plane in \mathbf{R}^3 .

b)
$$A = \begin{pmatrix} 17 & 7/2 \\ -3 & 0 \\ 24 & \pi \end{pmatrix}$$

a) Is
$$\begin{pmatrix} -1 \\ -5 \\ 12 \\ 4 \end{pmatrix}$$
 in Span $\left\{ \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 7 \\ 0 \\ 1 \end{pmatrix} \right\}$?
b) Find a vector in \mathbf{R}^3 that is not in Span $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$.

Solution.

a) We are asked to solve the vector equation

$$x_{1} \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} + x_{2} \begin{pmatrix} 2 \\ 7 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ 12 \\ 4 \end{pmatrix}.$$

We make an augmented matrix and row reduce:

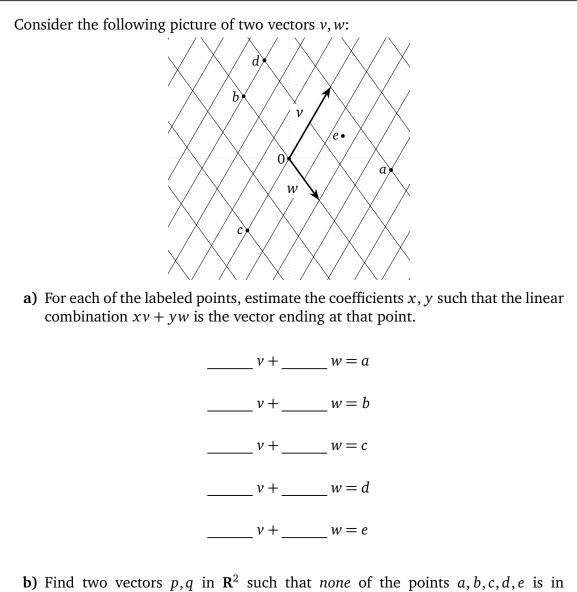
$$\begin{pmatrix} 1 & 2 & | & -1 \\ 3 & 7 & | & -5 \\ 4 & 0 & | & 12 \\ 2 & 1 & | & 4 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & -2 \\ 0 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{pmatrix}.$$

Hence $x_1 = 3$ and $x_2 = -2$, so

$$3 \begin{pmatrix} 1 \\ 3 \\ 4 \\ 2 \end{pmatrix} - 2 \begin{pmatrix} 2 \\ 7 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -5 \\ 12 \\ 4 \end{pmatrix},$$

and the answer is yes.

b) The vectors
$$\begin{pmatrix} 1\\0\\1 \end{pmatrix}$$
, $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$ span the *xz*-plane, so $\begin{pmatrix} 0\\1\\0 \end{pmatrix}$ works, for example.



b) Find two vectors p,q in \mathbb{R}^2 such that *none* of the points a,b,c,d,e is in Span $\{p,q\}$.

You needn't show your work in this problem.

Solution.

- **a)** As you can tell from the grid, you reach *a* by following *v* once then *w* twice. Hence a = v + 2w. Similarly, $b = 0v \frac{3}{2}w$, c = -v + 0w, $d = \frac{1}{2}v \frac{3}{2}w$, and $e = \frac{3}{4}v + \frac{3}{4}w$.
- b) None of the vectors a, b, c, d, e is contained in the x-axis. Therefore they are not contained in

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\ 0 \end{pmatrix}, \begin{pmatrix} -1\\ 0 \end{pmatrix} \right\}.$$

[Scratch work]