MATH 1553 PRACTICE MIDTERM 1 (VERSION A)

Name	Section	
------	---------	--

1	2	3	4	5	Total

Please read all instructions carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

This is a practice exam. It is similar in format, length, and difficulty to the real exam. It is **not** meant as a comprehensive list of study problems. I recommend completing the practice exam in 50 minutes, without notes or distractions.

Problem 1.

In this problem, *A* is an $m \times n$ matrix (*m* rows and *n* columns) and *b* is a vector in \mathbb{R}^{m} . Circle **T** if the statement is always true (for any choices of *A* and *b*) and circle **F** otherwise. Do not assume anything else about *A* or *b* except what is stated.

a)	Т	F	The matrix below is in reduced row echelon form.								
			$ \begin{pmatrix} 1 & 1 & 0 & -3 & & 1 \\ 0 & 0 & 1 & -1 & & 5 \\ 0 & 0 & 0 & 0 & & 0 \end{pmatrix} $								
b)	Т	F	If A has fewer than n pivots, then $Ax = b$ has infinitely many solutions.								
c)	Т	F	If the columns of A span \mathbf{R}^m , then $Ax = b$ must be consistent.								
d)	Т	F	If $Ax = b$ is consistent, then the equation $Ax = 5b$ is consistent.								
e)	Т	F	If $Ax = b$ is consistent, then the solution set is a span.								

Solution.

a) True.

- **b)** False: For example, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ has one pivot but has no solutions.
- c) True: the span of the columns of *A* is exactly the set of all *v* for which Ax = v is consistent. Since the span is \mathbf{R}^m , the matrix equation is consistent no matter what *b* is.
- **d)** True: If Aw = b then A(5w) = 5Aw = 5b.
- e) False: it is a *translate* of a span (unless b = 0).

Acme Widgets, Gizmos, and Doodads has two factories. Factory A makes 10 widgets, 3 gizmos, and 2 doodads every hour, and factory B makes 4 widgets, 1 gizmo, and 1 doodad every hour.

- a) If factory A runs for *a* hours and factory B runs for *b* hours, how many widgets, gizmos, and doodads are produced? Express your answer as a vector equation.
- **b)** A customer places an order for 16 widgets, 5 gizmos, and 3 doodads. Can Acme fill the order with no widgets, gizmos, or doodads left over? If so, how many hours do the factories run? If not, why not?

Solution.

a) Let *w*, *g*, and *d* be the number of widgets, gizmos, and doodads produced.

$$\binom{w}{g} = a \binom{10}{3} + b \binom{4}{1}.$$

b) We need to solve the vector equation

$$\begin{pmatrix} 16\\5\\3 \end{pmatrix} = a \begin{pmatrix} 10\\3\\2 \end{pmatrix} + b \begin{pmatrix} 4\\1\\1 \end{pmatrix}.$$

We put it into an augmented matrix and row reduce:

$$\begin{pmatrix} 10 & 4 & | & 16 \\ 3 & 1 & | & 5 \\ 2 & 1 & | & 3 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 3 & 1 & | & 5 \\ 2 & 1 & | & 3 \\ 10 & 4 & | & 16 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & | & 2 \\ 2 & 1 & | & 3 \\ 10 & 4 & | & 16 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -1 \\ 10 & 4 & | & 16 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -1 \\ 10 & 4 & | & 16 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -1 \\ 0 & 0 & | & 0 \end{pmatrix}$$

These equations are consistent, but they tell us that factory B would have to run for -1 hours! Therefore it can't be done.

Consider the system below, where h and k are real numbers.

$$x + 3y = 2$$
$$3x - hy = k.$$

- **a)** Find the values of *h* and *k* which make the system inconsistent.
- **b)** Find the values of *h* and *k* which give the system a unique solution.
- c) Find the values of *h* and *k* which give the system infinitely many solutions.

Solution.

We form an augmented matrix and row-reduce.

$$\begin{pmatrix} 1 & 3 & 2 \\ 3 & -h & k \end{pmatrix} \xrightarrow{R_2 = R_2 - 3R_1} \begin{pmatrix} 1 & 3 & 2 \\ 0 & -h - 9 & k - 6 \end{pmatrix}$$

- a) The system is inconsistent precisely when the augmented matrix has a pivot in the rightmost column. This is when -h 9 = 0 and $k 6 \neq 0$, so h = -9 and $k \neq 6$.
- **b)** The system has a unique solution if and only if the left two columns are pivot columns. We know the first column has a pivot, and the second column has a pivot precisely when $-h 9 \neq 0$, so $h \neq -9$ and k can be any real number.
- c) The system has infinitely many solutions when the system is consistent and has a free variable (which in this case must be *y*), so -h-9 = 0 and k-6 = 0, hence h = -9 and k = 6.

Consider the following consistent system of linear equations.

$$x_1 + 2x_2 + 3x_3 + 4x_4 = -2$$

$$3x_1 + 4x_2 + 5x_3 + 6x_4 = -2$$

$$5x_1 + 6x_2 + 7x_3 + 8x_4 = -2$$

- a) [4 points] Find the parametric vector form for the general solution.
- **b)** [3 points] Find the parametric vector form of the corresponding *homogeneous* equations. [Hint: you've already done the work.]
- c) [3 points] Unrelated to parts (a) and (b).
 If b, v, w are vectors in R³ and Span{b, v, w} = R³, is it possible that b is in Span{v, w}? Fully justify your answer.

Solution.

a) We put the equations into an augmented matrix and row reduce:

$$\begin{pmatrix} 1 & 2 & 3 & 4 & | & -2 \\ 3 & 4 & 5 & 6 & | & -2 \\ 5 & 6 & 7 & 8 & | & -2 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 2 & 3 & 4 & | & -2 \\ 0 & -2 & -4 & -6 & | & 4 \\ 0 & -4 & -8 & -12 & | & 8 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 2 & 3 & 4 & | & -2 \\ 0 & 1 & 2 & 3 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 0 & -1 & -2 & | & 2 \\ 0 & 1 & 2 & 3 & | & -2 \\ 0 & 1 & 2 & 3 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0 \end{pmatrix}$$

This means x_3 and x_4 are free, and the general solution is

$$\begin{cases} x_1 & -x_3 - 2x_4 = 2\\ x_2 + 2x_3 + 3x_4 = -2 \end{cases} \implies \begin{cases} x_1 = x_3 + 2x_4 + 2\\ x_2 = -2x_3 - 3x_4 - 2\\ x_3 = x_3\\ x_4 = x_4 \end{cases}$$

This gives the parametric vector form

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ -2 \\ 0 \\ 0 \end{pmatrix}.$$

b) Part (a) shows that the solution set of the original equations is the translate of

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\ -2\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 2\\ -3\\ 0\\ 1 \end{pmatrix} \right\} \quad \text{by} \quad \begin{pmatrix} 2\\ -2\\ 0\\ 0 \end{pmatrix}.$$

We know that the solution set of the homogeneous equations is the parallel plane through the origin, so it is

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\ -2\\ 1\\ 0 \end{pmatrix}, \begin{pmatrix} 2\\ -3\\ 0\\ 1 \end{pmatrix} \right\}.$$

Hence the parametric vector form is

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_3 \begin{pmatrix} 1 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 2 \\ -3 \\ 0 \\ 1 \end{pmatrix}.$$

c) No. Recall that Span{b, v, w} is the set of all linear combinations of b, v, and w. If b is in Span{v, w} then b is a linear combination of v and w. Consequently, any element of Span{b, v, w} is a linear combination of v and w and is therefore in Span{v, w}, which is "at most" a plane and cannot be all of R³.

To see why the span of v and w can never be \mathbb{R}^3 , consider the matrix A whose columns are v and w. Since A is 3×2 , it has at most two pivots, so A cannot have a pivot in every row. Therefore, by a theorem from section 1.4, the equation Ax = b will fail to be consistent for some b in \mathbb{R}^3 , which means that some b in \mathbb{R}^3 is not in the span of v and w.

b) Use an augmented matrix to solve this system of linear equations. Were we given enough information to know the exact values of x_1 , x_2 , and x_3 ?

Solution.

a) For the top, bottom right, and bottom left nodes, the number of cars entering must match the number of cars exiting, so the system is:

$$x_1 + 40 = x_3 + 110$$

 $x_1 + x_2 = 360$
 $x_2 + x_3 = 290.$

b) The system can be written

$$\begin{array}{rcl}
x_1 & -x_3 &= & 70 \\
x_1 + x_2 & = & 360 \\
x_2 + x_3 &= & 290.
\end{array}$$

We form an augmented matrix and perform row operations.

(1)	0	-1	70 \	$R_2 = R_2 - R_1$	(1	0	-1	70 \	$R_2 = R_2 - R_2$	(1)	0	-1	70 \	
1	1	0	360	\longrightarrow	0	1	1	290	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	1	1	290	
0/	1	1	290)		0)	1	1	290 <i>)</i>		0/	0	0	0)	

Therefore, x_3 is a free variable, $x_1 = x_3 + 70$, and $x_2 = 290 - x_3$.

We cannot know the exact values of x_1 , x_2 , and x_3 with the information we have only been given. For example, we could have $x_3 = 0$, $x_2 = 290$, $x_1 = 70$. Or, we could have $x_3 = 100$, $x_2 = 190$, $x_1 = 70$, etc. [Scratch work]