- \triangleright The midterm will be returned in recitation on Friday.
	- \triangleright You can pick it up from me in office hours before then.
	- \blacktriangleright Keep tabs on your grades on Canvas.
- \triangleright WeBWorK 1.7 is due Friday at 11:59pm.
- ▶ No quiz on Friday!
- \triangleright My office is Skiles 244 and my office hours are Monday, 1–3pm and Tuesday, 9–11am.

Section 1.8/1.9

Linear Transformations

Motivation

Let A be a matrix, and consider the matrix equation $b = Ax$. If we vary x, we can think of this as a function of x.

Many functions in real life—the linear transformations—come from matrices in this way.

It makes us happy when a function comes from a matrix, because then questions about the function translate into questions a matrix, which we can usually answer.

For this reason, we want to study matrices as functions.

Change in Perspective. Let A be a matrix with m rows and n columns. Let's think about the matrix equation $b = Ax$ as a function.

- The independent variable (the input) is x, which is a vector in \mathbb{R}^n .
- The dependent variable (the output) is b, which is a vector in \mathbb{R}^m .

As you vary x, then $b = Ax$ also varies. The set of all possible output vectors b is the column span of A.

Projection

$$
A=\begin{pmatrix}1&0&0\\0&1&0\\0&0&0\end{pmatrix}
$$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^3 and the output vector b is in \mathbf{R}^3 . Then

$$
A\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}.
$$

This is projection onto the xy-axis. Picture:

Matrices as Functions **Reflection**

 $\mathcal{A}=\left(\begin{array}{cc} -1 & 0 \ 0 & 1 \end{array} \right)$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^2 and the output vector b is in \mathbf{R}^2 . Then

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ y \end{pmatrix}.
$$

This is reflection over the y-axis. Picture:

Dilation

$$
A = \left(\begin{array}{cc} 1.5 & 0 \\ 0 & 1.5 \end{array}\right)
$$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^2 and the output vector b is in \mathbf{R}^2 .

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5 & 0 \\ 0 & 1.5 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1.5x \\ 1.5y \end{pmatrix} = 1.5 \begin{pmatrix} x \\ y \end{pmatrix}.
$$

This is dilation (scaling) by a factor of 1.5. Picture:

Identity

$$
A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
$$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^2 and the output vector b is in \mathbf{R}^2 .

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.
$$

This is the identity transformation which does nothing. Picture:

Rotation

$$
A=\begin{pmatrix}0&-1\\1&0\end{pmatrix}
$$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^2 and the output vector b is in \mathbf{R}^2 . Then

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.
$$

What is this? Let's plug in a few points and see what happens.

$$
A\begin{pmatrix} 1\\2 \end{pmatrix} = \begin{pmatrix} -2\\1 \end{pmatrix}
$$

$$
A\begin{pmatrix} -1\\1 \end{pmatrix} = \begin{pmatrix} -1\\-1 \end{pmatrix}
$$

$$
A\begin{pmatrix} 0\\-2 \end{pmatrix} = \begin{pmatrix} 2\\0 \end{pmatrix}
$$

It looks like counterclockwise rotation by 90°.

Rotation

$$
A=\begin{pmatrix}0&-1\\1&0\end{pmatrix}
$$

In the equation $Ax = b$, the input vector x is in \mathbf{R}^2 and the output vector b is in \mathbf{R}^2 . Then

$$
A\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -y \\ x \end{pmatrix}.
$$

In §1.9 of Lay, there is a long list of geometric transformations of R^2 given by matrices. (Reflections over the diagonal, contractions and expansions along different axes, shears, projections, . . .) Please look them over.

We have been drawing pictures of what it looks like to multiply a matrix by a vector, as a function of the vector.

Now let's go the other direction. Suppose we have a function, and we want to know, does it come from a matrix?

Example

For a vector x in R^2 , let $\mathcal{T}(x)$ be the counterclockwise rotation of x by an angle θ . Is $T(x) = Ax$ for some matrix A?

If $\theta = 90^{\circ}$, then we know $T(x) = Ax$, where

$$
A=\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.
$$

But for general θ , it's not clear.

Our next goal is to answer this kind of question.

Transformations Vocabulary

Definition

A **transformation** (or fu<mark>nction</mark> or $\textsf{map})$ from \textsf{R}^n to \textsf{R}^m is a rule $\mathcal T$ that assigns to each vector x in \mathbf{R}^n a vector $\mathcal{T}(x)$ in \mathbf{R}^m .

- \blacktriangleright **R**ⁿ is called the **domain** of T (the inputs).
- \blacktriangleright **R**^{*m*} is called the **codomain** of T (the outputs).
- For x in \mathbb{R}^n , the vector $T(x)$ in \mathbb{R}^m is the image of x under T. Notation: $x \mapsto T(x)$.
- If The set of all images $\{T(x) | x \text{ in } \mathbb{R}^n\}$ is the range of T.

Notation:

 $T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ means T is a transformation from \mathbf{R}^n to \mathbf{R}^m .

It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the output.

Functions from Calculus

Many of the functions you know and love have domain and codomain R.

sin:
$$
\mathbf{R} \longrightarrow \mathbf{R}
$$
 sin(x) = $\begin{pmatrix} \text{the length of the opposite edge over the} \\ \text{hypotenuse of a right triangle with angle} \\ x \text{ in radians} \end{pmatrix}$

Note how I've written down the rule that defines the function sin.

$$
f: \mathbf{R} \longrightarrow \mathbf{R}
$$
 $f(x) = x^2$

Note that " x^{2} " is sloppy (but common) notation for a function: it doesn't have a name!

You may be used to thinking of a function in terms of its graph.

 $(x, \sin x)$ The horizontal axis is the domain, and the vertical axis is the codomain.

> This is fine when the domain and codomain are R, but it's hard to do when they're R^2 and $\mathsf{R}^3!$ You need five dimensions to draw that graph.

Definition

Let A be an $m \times n$ matrix. The **matrix transformation** associated to A is the transformation

$$
T: \mathbf{R}^n \longrightarrow \mathbf{R}^m \quad \text{defined by} \quad T(x) = Ax.
$$

In other words, T takes the vector x in \mathbb{R}^n to the vector Ax in \mathbb{R}^m . For example, if $A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ and $T(x) = Ax$ then

$$
T\begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix} = \begin{pmatrix} -14 \\ -32 \end{pmatrix}.
$$

The *domain* of T is \mathbb{R}^n , which is the number of *columns* of A.

The codomain of T is \mathbb{R}^m , which is the number of rows of A.

 \triangleright The range of T is the set of all images of T:

$$
\mathcal{T}(x) = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.
$$

This is the *column span* of A. It is a span of vectors in the codomain.

Your life will be much easier
if you just remember these. Your life will be much easier if you just remember these.

Matrix Transformations Example

Let
$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}
$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^3$.
\n
$$
\triangleright \text{ If } u = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \text{ then } T(u) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 7 \\ 4 \\ 7 \end{pmatrix}.
$$
\n
$$
\triangleright \text{ Let } b = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}. \text{ Find } v \text{ in } \mathbb{R}^2 \text{ such that } T(v) = b. \text{ Is there more than one?}
$$

We want to find v such that $T(v) = Av = b$. We know how to do that:

$$
\begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} v = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix} \xrightarrow{\text{augmented} \atop \text{matrix}} \begin{pmatrix} 1 & 1 & 7 \\ 0 & 1 & 5 \\ 1 & 1 & 7 \end{pmatrix} \xrightarrow{\text{row}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{pmatrix}.
$$

This gives $x = 2$ and $y = 5$, or $v = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$ 5 $\big)$ (unique). In other words,

$$
\mathcal{T}(v) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \\ 7 \end{pmatrix}.
$$

Matrix Transformations

Example, continued

Let
$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}
$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^3$.

 \blacktriangleright Is there any c in \mathbf{R}^3 such that there is more than one v in \mathbf{R}^2 with $T(v) = c?$

Translation: is there any c in \mathbb{R}^3 such that the solution set of $Ax = c$ has more than one vector v in it?

The solution set of $Ax = c$ is a translate of the solution set of $Ax = b$ (from before), which has one vector in it. So the solution set to $Ax = c$ has only one vector. So no!

Find c such that there is no v with $T(v) = c$. Translation: Find c such that $Ax = c$ is inconsistent. Translation: Find c not in the column span of A (i.e., the range of T). We could draw a picture, or notice that if $c = \left(\frac{1}{3}\right)$, then our matrix equation translates into

$$
x + y = 1
$$
 $y = 2$ $x + y = 3$,

which is obviously inconsistent.

Note: All of these questions are questions about the transformation T ; it still makes sense to ask them in the absence of the matrix \vec{A}

The fact that T comes from a matrix means that these questions translate into questions about a matrix, which we know how to do.

Non-example:
$$
T : \mathbf{R}^2 \to \mathbf{R}^3
$$
 $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \sin x \\ xy \\ \cos y \end{pmatrix}$

Question: Is there any c in \mathbf{R}^3 such that there is more than one v in \mathbf{R}^2 with $T(v) = c?$

Note the question still makes sense, although T has no hope of being a matrix transformation.

By the way,

$$
T\begin{pmatrix}0\\0\end{pmatrix}=\begin{pmatrix}\sin 0\\0\cdot 0\\\cos 0\end{pmatrix}=\begin{pmatrix}0\\0\\1\end{pmatrix}=\begin{pmatrix}\sin \pi\\0\cdot \pi\\\cos 0\end{pmatrix}=T\begin{pmatrix}\pi\\0\end{pmatrix},
$$

so the answer is yes.

Matrix Transformations

Picture

The picture of a matrix transformation is the same as the pictures we've been drawing all along. Only the language is different. Let

$$
A = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad \text{and let} \quad T(x) = Ax,
$$

so $\mathcal{T}: \mathbf{R}^2 \to \mathbf{R}^2$. Then

$$
T\begin{pmatrix}x\\y\end{pmatrix}=A\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}-1&0\\0&1\end{pmatrix}\begin{pmatrix}x\\y\end{pmatrix}=\begin{pmatrix}-x\\y\end{pmatrix},
$$

which is still is reflection over the y-axis. Picture:

Poll

Let
$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$
 and let $T(x) = Ax$, so $T: \mathbb{R}^2 \to \mathbb{R}^2$. (*T* is called a **shear**.)

What does T do to this sheep?

Poll

Hint: first draw a picture what it does to the box around the sheep.

Linear Transformations

So, which transformations actually come from matrices?

Recall: If A is a matrix, u, v are vectors, and c is a scalar, then

 $A(u + v) = Au + Av$ $A(cv) = cAv$.

So if $T(x) = Ax$ is a matrix transformation then,

 $T(u + v) = T(u) + T(v)$ and $T(cv) = cT(v)$.

Any matrix transformation has to satisfy this property. This property is so special that it has its own name.

Definition

A transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is **linear** if it satisfies the above equations for all vectors u, v in \mathbf{R}^n and all scalars c.

In other words, T "respects" addition and scalar multiplication.

Check: if T is linear, then

$$
T(0) = 0 \qquad T(cu + dv) = cT(u) + dT(v)
$$

for all vectors u, v and scalars c, d . More generally,

 $T(c_1v_1 + c_2v_2 + \cdots + c_nv_n) = c_1T(v_1) + c_2T(v_2) + \cdots + c_nT(v_n).$ In engineering this is called superposition.

Summary

- \triangleright We can think of $b = Ax$ as a transformation with input x and output b. This gives us a way to draw pictures of the geometry of a matrix.
- \blacktriangleright There are lots of questions that one can ask about transformations.
- \triangleright We like transformations that come from matrices, because questions about those transformations turn into questions about matrices.
- \blacktriangleright Linear transformations are the transformations that come from matrices.