Math 1553 Worksheet §1.7, 1.8, 1.9 Solutions

1. Justify why each of the following true statements can be checked without row reduction.

a)
$$
\left\{ \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix} \right\}
$$
 is linearly independent.
b) $\left\{ \begin{pmatrix} 3 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 7 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ is linearly dependent.

Solution.

a) Here's how to eyeball linear independence. Since the first coordinate of $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ 3 4 ! is nonzero, 3 3 4 $\bigg\}$ cannot be in the span of $\left\{ \bigg(\begin{array}{c} 0 \\ 10 \end{array} \right)$ $\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix}$, $\sqrt{0}$ 5 7 $\left\{ \right\}$. And $\left(\begin{array}{c} 0 \\ 10 \end{array} \right)$ 10 $\begin{pmatrix} 0 \\ 10 \\ 20 \end{pmatrix}$ is not in the span of $\begin{cases} 0 \\ 5 \end{cases}$ 7 \setminus because it is not a multiple. Hence the span gets bigger each time you add a vector, so they're linearly independent.

- **b)** Any four vectors in **R** 3 are linearly dependent; you don't need row reduction for that.
- **2.** Every color on my computer monitor is a vector in **R** ³ with coordinates between 0 and 255, inclusive. The coordinates correspond to the amount of red, green, and blue in the color.

Given colors v_1, v_2, \ldots, v_p , we can form a "weighted average" of these colors by making a linear combination

$$
v = c_1 v_1 + c_2 v_2 + \dots + c_p v_p
$$

with $c_1 + c_2 + \cdots + c_p = 1$. Example:

Consider the colors on the right. Are these colors linearly independent? What does this tell you about the colors?

Solution.

The vectors

$$
\begin{pmatrix} 240 \\ 140 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 120 \\ 100 \end{pmatrix}, \quad \begin{pmatrix} 60 \\ 125 \\ 75 \end{pmatrix}
$$

are linearly independent if and only if the vector equation

$$
x\begin{pmatrix} 240 \\ 140 \\ 0 \end{pmatrix} + y\begin{pmatrix} 0 \\ 120 \\ 100 \end{pmatrix} + z\begin{pmatrix} 60 \\ 125 \\ 75 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}
$$

has only the trivial solution. This translates into the matrix (we don't need to augment since it's a homogeneous system)

$$
\begin{pmatrix} 240 & 0 & 60 \ 140 & 120 & 125 \ 0 & 100 & 75 \end{pmatrix} \xrightarrow{\text{mref}} \begin{pmatrix} 1 & 0 & .25 \ 0 & 1 & .75 \ 0 & 0 & 0 \end{pmatrix} \xrightarrow{\text{parametric}} \begin{array}{r} x = -.25z \\ y = -.75z \end{array}
$$

Hence the vectors are linearly *de*pendent; taking $z = 1$ gives the linear dependence relation

$$
-\frac{1}{4} \begin{pmatrix} 240 \\ 140 \\ 0 \end{pmatrix} - \frac{3}{4} \begin{pmatrix} 0 \\ 120 \\ 100 \end{pmatrix} + \begin{pmatrix} 60 \\ 125 \\ 75 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

Rearranging gives

$$
\begin{pmatrix} 60 \\ 125 \\ 75 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 240 \\ 140 \\ 0 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 0 \\ 120 \\ 100 \end{pmatrix}.
$$

In terms of colors:

$$
\begin{pmatrix} 60 \\ 125 \\ 75 \end{pmatrix} = \frac{1}{4} \begin{pmatrix} 240 \\ 140 \\ 0 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 0 \\ 120 \\ 100 \end{pmatrix} = \begin{pmatrix} 60 \\ 35 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 90 \\ 75 \end{pmatrix}
$$

3. Let *A* be a 3 × 4 matrix with column vectors v_1 , v_2 , v_3 , v_4 . Suppose that $v_2 = 2v_1 - 3v_4$. Find one non-trivial solution to the equation $Ax = 0$.

Solution.

From the linear dependence condition we were given, we get

$$
-2v_1 + v_2 + 3v_4 = 0.
$$

This vector equation is just

$$
\begin{pmatrix} | & | & | & | \\ v_1 & v_2 & v_3 & v_4 \\ | & | & | & | \end{pmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \text{ so } A \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.
$$

Thus, $x = \begin{pmatrix} -2 \\ 1 \\ 0 \\ 3 \end{pmatrix}$ is one solution.

- **4.** Which of the following transformations *T* are onto? Which are one-to-one? If the transformation is not onto, find a vector not in the range. If the matrix is not one-to-one, find two vectors with the same image.
	- a) Counterclockwise rotation by 32° in \mathbb{R}^2 .
	- **b**) The transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (z, x)$.
	- **c**) The transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (0, x)$.
	- **d)** The matrix transformation with standard matrix *A* = $(1 \t 6)$ −1 2 $2 -1$! .
	- **e)** The matrix transformation with standard matrix *A* = $(1 \ 3 \ 0)$ 0 0 1 $\begin{pmatrix} 1 & 3 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{pmatrix}$.

Solution.

- **a**) This is both one-to-one and onto. If ν is any vector in \mathbb{R}^2 , then there is one and only one vector *w* such that $T(w) = v$, namely, the vector that is rotated $-32°$ from *v*.
- **b**) This is onto. If (a, b) is any vector in the codomain \mathbb{R}^2 , then $(a, b) = T(b, 0, a)$, so (a, b) is in the range. It is not one-to-one though: indeed, $T(0, 0, 0) =$ $(0, 0) = T(0, 1, 0).$
- **c**) This is not onto. There is no (x, y, z) such that $T(x, y, z) = (1, 0)$. It is not one-to-one: for instance, $T(0, 0, 0) = (0, 0) = T(0, 1, 0)$.

d) The transformation *T* with matrix *A* is onto if and only if *A* has a pivot in every *row*, and it is one-to-one if and only if *A* has a pivot in every *column*. So we row reduce:

$$
A = \begin{pmatrix} 1 & 6 \\ -1 & 2 \\ 2 & -1 \end{pmatrix} \quad \text{where} \quad \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.
$$

This has a pivot in every column, so *T* is one-to-one. It does not have a pivot in every row, so it is not onto. To find a specific vector *b* in **R** ³ which is not in the image of T , we have to find a $b = (b_1, b_2, b_3)$ such that the matrix equation $Ax = b$ is inconsistent. We row reduce again:

$$
(A | b) = \begin{pmatrix} 1 & 6 & b_1 \\ -1 & 2 & b_2 \\ 2 & -1 & b_3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & \text{don't care} \\ 0 & 1 & \text{don't care} \\ 0 & 0 & -3b_1 + 13b_2 + 8b_3 \end{pmatrix}.
$$

Hence any b_1 , b_2 , b_3 for which $-3b_1 + 13b_2 + 8b_3 \neq 0$ will make the equation $Ax = b$ inconsistent. For instance, $b = (1, 0, 0)$ is not in the range of *T*.

e) This matrix is already row reduced. We can see that does not have a pivot in every row *or* in every column, so it is neither onto nor one-to-one. In fact, if $T(x) = Ax$ then

$$
T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_1 + 3x_2 \\ x_3 \\ 0 \end{pmatrix},
$$

so we can see that (0, 0, 1) is not in the range of *T*, and that

$$
T\begin{pmatrix}0\\0\\0\end{pmatrix} = \begin{pmatrix}0\\0\\0\end{pmatrix} = T\begin{pmatrix}-3\\1\\0\end{pmatrix}.
$$

5. For each matrix *A*, describe what the associated matrix transformation *T* does to **R** 3 geometrically.

Solution.

a) We compute

$$
T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} y \\ x \\ z \end{pmatrix}.
$$

This is the reflection over the plane $y = x$.

b) We compute

$$
T\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ z \end{pmatrix}.
$$

This is projection onto the *z*-axis.

6. The second little pig has decided to build his house out of sticks. His house is shaped like a pyramid with a triangular base that has vertices at the points (0, 0, 0), $(2, 0, 0)$, $(0, 2, 0)$, and $(1, 1, 1)$. The big bad wolf finds the pig's house and blows it down so that the house is rotated by an angle of 45◦ in a counterclockwise direction about the *z*-axis, and then projected onto the *x y*-plane. Find the matrix for this transformation.

Solution.

First notice that the little pig is a red herring, as it were—this is a question about the linear transformation *T* described in the last two lines. To compute the matrix for *T*, we have to compute $T(e_1)$, $T(e_2)$, and $T(e_3)$. Here is a picture of the *x y*-plane, with *z* pointing up out of the page (using the coordinate system from the slides):

From the picture, we see

$$
T(e_1) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad T(e_2) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.
$$

Rotating *e*³ around the *z*-axis does nothing, and projecting onto the *x y*-plane sends it to zero, so $T(e_3) = 0$. Therefore, the matrix for T is

$$
\left(\begin{array}{ccc} | & | & | \\ T(e_1) & T(e_2) & T(e_3) \\ | & | & | \end{array}\right) = \frac{1}{\sqrt{2}} \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right).
$$