- \blacktriangleright Please fill out the mid-semester survey under "Quizzes" on Canvas.
- \blacktriangleright WeBWorK 1.8, 1.9 are due Wednesday at 11:59pm.
- \blacktriangleright The quiz on Friday covers §§1.7, 1.8, and 1.9.
- \triangleright My office is Skiles 244. Rabinoffice hours are Monday, 1-3pm and Tuesday, 9–11am.

Chapter 2

Matrix Algebra

Section 2.1

Matrix Operations

Motivation

Recall: we can turn any system of linear equations into a matrix equation

 $Ax = b$.

This notation is suggestive. Can we solve the equation by "dividing by A"?

$$
x \stackrel{??}{=} \frac{b}{A}
$$

Answer: Sometimes, but you have to know what you're doing.

Today we'll study *matrix algebra*: adding and multiplying matrices.

These are not so hard to do. The important thing to understand today is the relationship between matrix multiplication and composition of transformations.

More Notation for Matrices

Let A be an $m \times n$ matrix.

We write a_{ij} for the entry in the *i*th row and the *i*th column. It is called the i th entry of the matrix.

The entries $a_{11}, a_{22}, a_{33}, \ldots$ are the **diag**onal entries; they form the main diagonal of the matrix.

A diagonal matrix is a square matrix whose only nonzero entries are on the main diagonal.

The $n \times n$ identity matrix I_n is the diagonal matrix with all diagonal entries equal to 1. It is special because $I_n v = v$ for all v in \mathbb{R}^n .

More Notation for Matrices

Continued

The zero matrix (of size $m \times n$) is the $m \times n$ matrix 0 with all zero entries.

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix $A^{\mathcal{T}}$ whose rows are the columns of A . In other words, the ij entry of $A^{\mathcal{T}}$ is a_{ji} .

Addition and Scalar Multiplication

You add two matrices component by component, like with vectors.

 $\begin{pmatrix} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \ b_{21} & b_{22} & b_{23} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \end{pmatrix}$

Note you can only add two matrices of the same size.

You multiply a matrix by a scalar by multiplying each component, like with vectors.

$$
c\begin{pmatrix}a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23}\end{pmatrix} = \begin{pmatrix} ca_{11} & ca_{12} & ca_{13} \ ca_{21} & ca_{22} & ca_{23}\end{pmatrix}
$$

.

These satisfy the expected rules, like with vectors:

Beware: matrix multiplication is more subtle than addition and scalar multiplication. must be equal

Let A be an $m\times n$ matrix and let B be an $n\times p$ matrix with columns $v_1, v_2 \ldots, v_p$:

$$
B=\left(\begin{matrix}\n\cdot & \cdot & \cdot & \cdot \\
v_1 & v_2 & \cdots & v_p \\
\cdot & \cdot & \cdot & \cdot\n\end{matrix}\right).
$$

The **product** AB is the $m \times p$ matrix with columns Av_1, Av_2, \ldots, Av_p :

The equality is
a definition
$$
AB \stackrel{\text{def}}{=} \begin{pmatrix} | & | & | & | \\ Av_1 & Av_2 & \cdots & Av_p \\ | & | & | & | \end{pmatrix}
$$
.

In order for Av_1, Av_2, \ldots, Av_p to make sense, the number of columns of A has to be the same as the number of rows of B . Note the sizes of the product!

Example

$$
\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} 1 & -3 \\ 2 & -2 \\ 3 & -1 \end{pmatrix} =
$$

The ij entry of $C = AB$ is the *i*th row of A times the *j*th column of B: $c_{ij} = (AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}.$

This is how everybody on the planet actually computes AB. Diagram $(AB = C)$:

$$
\begin{pmatrix}\n a_{11} & \cdots & a_{1k} & \cdots & a_{1n} \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 \hline\n a_{i1} & \cdots & a_{ik} & \cdots & a_{in} \\
 \vdots & \vdots & \vdots & \vdots & \vdots \\
 a_{m1} & \cdots & a_{mk} & \cdots & a_{mn}\n\end{pmatrix}\n\cdot\n\begin{pmatrix}\n b_{11} & \cdots & b_{1j} \\
 \vdots & \vdots & \vdots \\
 b_{k1} & \cdots & b_{kp} \\
 \vdots & \vdots & \vdots \\
 b_{n1} & \cdots & b_{np}\n\end{pmatrix}\n=\n\begin{pmatrix}\n c_{11} & \cdots & c_{1j} & \cdots & c_{1p} \\
 \vdots & \vdots & \vdots & \vdots \\
 c_{i1} & \cdots & c_{ij} & \cdots & c_{ip} \\
 \vdots & \vdots & \ddots & \vdots \\
 c_{m1} & \cdots & c_{mj} & \cdots & c_{mp}\n\end{pmatrix}
$$

Example

Why is this the correct definition of matrix multiplication?

Definition

Let $\mathcal{T} \colon \mathbf{R}^n \to \mathbf{R}^m$ and $U \colon \mathbf{R}^p \to \mathbf{R}^n$ be transformations. The **composition** is the transformation

 $T \circ U : \mathbf{R}^p \to \mathbf{R}^m$ defined by $T \circ U(x) = T(U(x)).$

This makes sense because $U(x)$ (the output of U) is in ${\bf R}^n$, which is the domain of T (the inputs of T). [\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/compose2d.html?mat1=1,.5,-1,1&mat2=0,-1,1,0&closed)

Fact: If T and U are linear then so is $T \circ U$.

Guess: If A is the matrix for T, and B is the matrix for U, what is the matrix for $T \circ 117$

Let $\mathcal{T} \colon \mathbf{R}^n \to \mathbf{R}^m$ and $U \colon \mathbf{R}^p \to \mathbf{R}^n$ be *linear* transformations. Let A and B be their matrices:

$$
A = \left(\begin{array}{cccc} | & | & | \\ \mathcal{T}(e_1) & \mathcal{T}(e_2) & \cdots & \mathcal{T}(e_n) \\ | & | & | & | \end{array}\right) \quad B = \left(\begin{array}{cccc} | & | & | \\ \mathcal{U}(e_1) & \mathcal{U}(e_2) & \cdots & \mathcal{U}(e_p) \\ | & | & | & | \end{array}\right)
$$

Question

What is the matrix for $T \circ U$?

The matrix of the composition is the product of the matrices!

Let $\mathcal{T} \colon \mathsf{R}^3 \to \mathsf{R}^2$ and $\mathcal{U} \colon \mathsf{R}^2 \to \mathsf{R}^3$ be the matrix transformations

$$
T(x) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \end{pmatrix} x \qquad U(x) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} x.
$$

Then the matrix for $T \circ U$ is

$$
\begin{pmatrix} 1 & -1 & 0 \ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \ 0 & 1 \ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \ 1 & 2 \end{pmatrix}
$$

[\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/compose3d.html?closed&mat2=1,-1,0:0,1,1&mat1=1,0:0,1:1,1&range=3)

Another Example

Let $\mathcal{T}\colon \mathbf{R}^2 \to \mathbf{R}^2$ be rotation by 45°, and let $U\colon \mathbf{R}^2 \to \mathbf{R}^2$ scale the x -coordinate by 1.5. Let's compute their standard matrices A and B :

$$
\implies A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} 1.5 & 0 \\ 0 & 1 \end{pmatrix}
$$

Another example, continued

So the matrix C for $T \circ U$ is

Check: [\[interactive:](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/compose2d.html?closed&mat2=.70711,-.70711,.70711,.70711&mat1=1.5,0,0,1&vec=0,1&range=2) e_1] [interactive: e_2]

$$
\implies C = \frac{1}{\sqrt{2}} \begin{pmatrix} 1.5 & -1 \\ 1.5 & 1 \end{pmatrix} \qquad \blacktriangleright
$$

Another example

Let $\mathcal{T} \colon \mathbf{R}^3 \to \mathbf{R}^3$ be projection onto the yz-plane, and let $U \colon \mathbf{R}^3 \to \mathbf{R}^3$ be reflection over the xy -plane. Let's compute their standard matrices A and B :

Another example, continued

So the matrix C for $T \circ U$ is

Check: we did this last time

[\[interactive:](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/compose3d.html?x=0,0,1&mat1=0,0,0:0,1,0:0,0,1&mat2=1,0,0:0,1,0:0,0,-1&range=2) e_1] [interactive: e_2] [interactive: e_3]

Poll

Mostly matrix multiplication works like you'd expect. Suppose A has size $m \times n$, and that the other matrices below have the right size to make multiplication work.

Most of these are easy to verify.

Associativity is $A(BC) = (AB)C$. It is a pain to verify using the row-column rule! Much easier: use associativity of linear transformations:

$$
S\circ (T\circ U)=(S\circ T)\circ U.
$$

This is a good example of an instance where having a conceptual viewpoint saves you a lot of work.

Recommended: Try to verify all of them on your own.

Properties of Matrix Multiplication **Caveats**

Warnings!

 \triangleright AB is usually not equal to BA.

In fact, AB may be defined when BA is not.

 $AB = AC$ does not imply $B = C$, even if $A \neq 0$.

 $AB = 0$ does not imply $A = 0$ or $B = 0$.

Read about powers of a matrix and multiplication of transposes in §2.1.

Summary

- In The product of an $m \times n$ matrix and an $n \times p$ matrix is an $m \times p$ matrix. I showed you two ways of computing the product.
- \triangleright Composition of linear transformations corresponds to multiplication of matrices.
- \triangleright You have to be careful when multiplying matrices together, because things like commutativity and cancellation fail.