Math 1553 Worksheet §§2.1, 2.2, 2.3 Solutions

1. If *A* is a 3 \times 5 matrix and *B* is a 3 \times 2 matrix, which of the following are defined?

- **a)** *A*− *B*
- **b)** *AB*
- **c**) $A^T B$
- **d)** *B TA*
- **e)** *A* 2

Solution.

Only (c) and (d).

- **a)** *A* − *B* is nonsense. In order for *A* − *B* to be defined, *A* and *B* need to have the same number or rows and same number of columns.
- **b)** *AB* is undefined since the number of columns of *A* does not equal the number of rows of *B*.
- **c**) A^T is 5 × 3 and *B* is 3 × 2, so $A^T B$ is a 5 × 2 matrix.
- **d**) B^T is 2 × 3 and *A* is 3 × 5, so $B^T A$ is a 2 × 5 matrix.
- **e**) A^2 is nonsense (can't multiply 3×5 with another 3×5).
- **2.** Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ *T* projects onto the *xy*-plane, forgetting the *z*-coordinate $U: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ *U* rotates clockwise by 90°

- *V* : $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$ *V* scales the *x*-direction by a factor of 2.
- Let *A*, *B*, *C* be the matrices for *T*,*U*, *V*, respectively.
	- **a)** Compute *A*, *B*, and *C*.
- **b**) Compute the matrix for $V \circ U \circ T$.
- **c**) Compute the matrix for $U \circ V \circ T$.
- **d**) Describe U^{-1} and V^{-1} , and compute their matrices.

Solution.

a) We plug in the unit coordinate vectors:

$$
T(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad T(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad T(e_3) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
$$

$$
U(e_1) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad U(e_2) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \Longrightarrow \quad B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.
$$

$$
V(e_1) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad V(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad \Longrightarrow \quad C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}
$$
b)
$$
CBA = \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}
$$
c)
$$
BCA = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \end{pmatrix}
$$

d) U^{-1} is counterclockwise rotation by 90 $^{\circ}$, and V^{-1} scales the *x*-direction by a factor of 1*/*2. Their matrices are, respectively,

$$
B^{-1} = \frac{1}{0 \cdot 0 - (-1) \cdot 1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}
$$

and

$$
C^{-1} = \frac{1}{2 \cdot 1 - 0 \cdot 0} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}.
$$

3. Solve $AB = BC$ for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!

Solution.

$$
AB = BC
$$
 $AB(B^{-1}) = BC(B^{-1})$ $AI_n = BCB^{-1}$ $A = BCB^{-1}$

It is very important that we multiplied by B^{-1} on the same side in each equation, since matrix multiplication generally is not commutative. Had we multiplied by *B*^{-1} on the left for each side, we would have found *B*^{-1}*AB* = *C*.

- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
	- **a**) If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
	- **b**) If *A* and *B* are $n \times n$ and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
	- **c**) If A^T is not invertible, then *A* is not invertible.
	- **d**) If *A* is an $n \times n$ matrix and the equation $Ax = b$ has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
	- **e**) If *A* and *B* are invertible *n* × *n* matrices, then *A*+*B* is invertible and $(A+B)^{-1}$ = $A^{-1} + B^{-1}$.

f) If *A* and *B* are $n \times n$ matrices and $ABx = 0$ has a unique solution, then $Ax = 0$ has a unique solution.

Solution.

- **a)** True.
- **b**) False. $(AB)^{-1} = B^{-1}A^{-1}$.
- **c)** True. Part of the Invertible Matrix Theorem.
- **d**) True. The first part says $T(x) = Ax$ is onto. Since *A* is $n \times n$, this is the same as saying *A* is invertible, so *T* is one-to-one and onto. Therefore, the equation $Ax = b$ has exactly one solution for each *b* in \mathbb{R}^n .
- **e**) False. $A + B$ might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then $A + B = 0$ which is not invertible. Even in the case when *A* + *B* is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}$ $\frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- **f)** True. According to the Invertible Matrix Theorem, the product *AB* is invertible. This implies *A* is invertible, with inverse $B(AB)^{-1}$:

$$
A \cdot B(AB)^{-1} = (AB)(AB)^{-1} = I_n.
$$

5. Consider the matrix

$$
A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

- **a**) Compute A^{-1} .
- **b**) Express A^{-1} as a product of elementary matrices.
- **c)** Express *A* as a product of elementary matrices.

Solution.

a) We row-reduce $(A^{-1} | I_3)$:

$$
\begin{pmatrix}\n4 & 3 & 0 & 1 & 0 & 0 \\
1 & 2 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix} \xrightarrow{\text{Momentum}} \begin{pmatrix}\n1 & 2 & 0 & 0 & 1 & 0 \\
4 & 3 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\xrightarrow{R_2 = R_2 - 4R_1} \begin{pmatrix}\n1 & 2 & 0 & 0 & 1 & 0 \\
0 & -5 & 0 & 1 & -4 & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\xrightarrow{R_2 = R_2 \div -5} \begin{pmatrix}\n1 & 2 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix}
$$
\n
$$
\xrightarrow{R_1 = R_1 - 2R_2} \begin{pmatrix}\n1 & 0 & 0 & \frac{2}{5} & -\frac{3}{5} & 0 \\
0 & 1 & 0 & -\frac{1}{5} & \frac{4}{5} & 0 \\
0 & 0 & 1 & 0 & 0 & 1\n\end{pmatrix}
$$

Therefore,

$$
A^{-1} = \begin{pmatrix} \frac{2}{5} & -\frac{3}{5} & 0 \\ -\frac{1}{5} & \frac{4}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

b) The elementary matrices corresponding to the four row operations are, in order,

$$
E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

$$
E_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_4 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$

We have $E_4 E_3 E_2 E_1 A = I_3$, so

$$
A^{-1} = E_4 E_3 E_2 E_1 I_3 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

c) First note

$$
A = (A^{-1})^{-1} = (E_4 E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1}.
$$

The inverse of an elementary matrix is the elementary matrix for the inverse row operation:

$$
E_1^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 (R₁ \leftrightarrow R₂)
\n
$$
E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 (R₂ = R₂ + 4R₁)
\n
$$
E_3^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 (R₂ = R₂ × -5)
\n
$$
E_4^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
$$
 (R₁ = R₁ + 2R₂)

Therefore,

$$
A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$