Math 1553 Worksheet §§2.1, 2.2, 2.3 Solutions

1. If *A* is a 3×5 matrix and *B* is a 3×2 matrix, which of the following are defined?

- **a)** *A*−*B*
- **b)** *AB*
- **c)** $A^T B$
- **d)** $B^T A$
- **e)** *A*²

Solution.

Only (c) and (d).

- **a)** A-B is nonsense. In order for A-B to be defined, A and B need to have the same number or rows and same number of columns.
- **b)** *AB* is undefined since the number of columns of *A* does not equal the number of rows of *B*.
- **c)** A^T is 5 × 3 and *B* is 3 × 2, so $A^T B$ is a 5 × 2 matrix.
- **d)** B^T is 2 × 3 and A is 3 × 5, so $B^T A$ is a 2 × 5 matrix.
- e) A^2 is nonsense (can't multiply 3×5 with another 3×5).
- **2.** Consider the following linear transformations:

 $T: \mathbf{R}^3 \longrightarrow \mathbf{R}^2$ *T* projects onto the *xy*-plane, forgetting the *z*-coordinate $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ *U* rotates clockwise by 90°

- $V: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ V scales the x-direction by a factor of 2.
- Let A, B, C be the matrices for T, U, V, respectively.
 - **a)** Compute *A*, *B*, and *C*.
- **b)** Compute the matrix for $V \circ U \circ T$.
- **c)** Compute the matrix for $U \circ V \circ T$.
- **d)** Describe U^{-1} and V^{-1} , and compute their matrices.

Solution.

a) We plug in the unit coordinate vectors:

$$T(e_{1}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad T(e_{2}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad T(e_{3}) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \implies A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$U(e_{1}) = \begin{pmatrix} 0 \\ -1 \end{pmatrix} \quad U(e_{2}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} .$$
$$V(e_{1}) = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \quad V(e_{2}) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \implies C = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
$$b) \quad CBA = \begin{pmatrix} 0 & 2 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
$$c) \quad BCA = \begin{pmatrix} 0 & 1 & 0 \\ -2 & 0 & 0 \end{pmatrix}$$

d) U^{-1} is counterclockwise rotation by 90°, and V^{-1} scales the *x*-direction by a factor of 1/2. Their matrices are, respectively,

$$B^{-1} = \frac{1}{0 \cdot 0 - (-1) \cdot 1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

and

$$C^{-1} = \frac{1}{2 \cdot 1 - 0 \cdot 0} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} = \begin{pmatrix} 1/2 & 0 \\ 0 & 1 \end{pmatrix}.$$

3. Solve AB = BC for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!

Solution.

$$AB = BC$$
 $AB(B^{-1}) = BC(B^{-1})$ $AI_n = BCB^{-1}$ $A = BCB^{-1}$

It is very important that we multiplied by B^{-1} on the same side in each equation, since matrix multiplication generally is not commutative. Had we multiplied by B^{-1} on the left for each side, we would have found $B^{-1}AB = C$.

- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
 - **b)** If *A* and *B* are $n \times n$ and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - c) If A^T is not invertible, then A is not invertible.
 - **d)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - e) If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.

f) If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, then Ax = 0 has a unique solution.

Solution.

- a) True.
- **b)** False. $(AB)^{-1} = B^{-1}A^{-1}$.
- c) True. Part of the Invertible Matrix Theorem.
- **d)** True. The first part says T(x) = Ax is onto. Since *A* is $n \times n$, this is the same as saying *A* is invertible, so *T* is one-to-one and onto. Therefore, the equation Ax = b has exactly one solution for each *b* in \mathbb{R}^n .
- e) False. A + B might not be invertible in the first place. For example, if $A = I_2$ and $B = -I_2$ then A + B = 0 which is not invertible. Even in the case when A + B is invertible, it still might not be true that $(A + B)^{-1} = A^{-1} + B^{-1}$. For example, $(I_2 + I_2)^{-1} = (2I_2)^{-1} = \frac{1}{2}I_2$, whereas $(I_2)^{-1} + (I_2)^{-1} = I_2 + I_2 = 2I_2$.
- **f)** True. According to the Invertible Matrix Theorem, the product *AB* is invertible. This implies *A* is invertible, with inverse $B(AB)^{-1}$:

$$A \cdot B(AB)^{-1} = (AB)(AB)^{-1} = I_n.$$

5. Consider the matrix

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **a)** Compute A^{-1} .
- **b)** Express A^{-1} as a product of elementary matrices.
- c) Express *A* as a product of elementary matrices.

Solution.

a) We row-reduce $(A^{-1} | I_3)$:

$$\begin{pmatrix} 4 & 3 & 0 & | & 1 & 0 & 0 \\ 1 & 2 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{pmatrix} 1 & 2 & 0 & | & 0 & 1 & 0 \\ 4 & 3 & 0 & | & 1 & 0 & 0 \\ 0 & 0 & 1 & | & 0 & 0 & 1 \end{pmatrix}$$

$$\begin{array}{c} R_2 = R_2 - 4R_1 \\ R_2 = R_2 \leftrightarrow -5 \\ R_2 = R_2 \div -5 \\ R_2 = R_2 \div -5 \\ R_1 = R_1 - 2R_2 \\ R_1 = R_1 - \frac{2R_2}{1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Therefore,

$$A^{-1} = \begin{pmatrix} \frac{2}{5} & -\frac{3}{5} & 0\\ -\frac{1}{5} & \frac{4}{5} & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

b) The elementary matrices corresponding to the four row operations are, in order,

$$E_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{2} = \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$E_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad E_{4} = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We have $E_4 E_3 E_2 E_1 A = I_3$, so

$$A^{-1} = E_4 E_3 E_2 E_1 I_3 = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{5} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

c) First note

$$A = (A^{-1})^{-1} = (E_4 E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1}.$$

The inverse of an elementary matrix is the elementary matrix for the inverse row operation:

$$E_{1}^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (R_{1} \leftrightarrow R_{2})$$
$$E_{2}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (R_{2} = R_{2} + 4R_{1})$$
$$E_{3}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (R_{2} = R_{2} \times -5)$$
$$E_{4}^{-1} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad (R_{1} = R_{1} + 2R_{2})$$

Therefore,

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -5 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$