Math 1553 Worksheet §§2.1, 2.2, 2.3

- **1.** If A is a 3×5 matrix and B is a 3×2 matrix, which of the following are defined?
 - a) A-B
 - **b)** AB
 - c) A^TB
 - d) $B^T A$
 - e) A^2
- **2.** Consider the following linear transformations:

 $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ T projects onto the xy-plane, forgetting the z-coordinate

 $U: \mathbf{R}^2 \longrightarrow \mathbf{R}^2$ U rotates clockwise by 90°

 $V: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ V scales the x-direction by a factor of 2.

Let A, B, C be the matrices for T, U, V, respectively.

- **a)** Compute *A*, *B*, and *C*.
- **b)** Compute the matrix for $V \circ U \circ T$.
- **c)** Compute the matrix for $U \circ V \circ T$.
- **d)** Describe U^{-1} and V^{-1} , and compute their matrices.
- **3.** Solve AB = BC for A, assuming A, B, C are $n \times n$ matrices and B is invertible. Be careful!
- **4.** True or false (justify your answer). Answer true if the statement is *always* true. Otherwise, answer false.
 - a) If *A* is an $m \times n$ matrix and *B* is an $n \times p$ matrix, then each column of *AB* is a linear combination of the columns of *A*.
 - **b)** If *A* and *B* are $n \times n$ and both are invertible, then the inverse of *AB* is $A^{-1}B^{-1}$.
 - **c)** If A^T is not invertible, then A is not invertible.
 - **d)** If *A* is an $n \times n$ matrix and the equation Ax = b has at least one solution for each *b* in \mathbb{R}^n , then the solution is *unique* for each *b* in \mathbb{R}^n .
 - e) If *A* and *B* are invertible $n \times n$ matrices, then A + B is invertible and $(A + B)^{-1} = A^{-1} + B^{-1}$.
 - **f)** If *A* and *B* are $n \times n$ matrices and ABx = 0 has a unique solution, then Ax = 0 has a unique solution.

5. Consider the matrix

$$A = \begin{pmatrix} 4 & 3 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

- **a)** Compute A^{-1} .
- **b)** Express A^{-1} as a product of elementary matrices.
- **c)** Express *A* as a product of elementary matrices.