Announcements
Wednesday, October 11

v

The second midterm is on Friday, October 20.

> That is one week from this Friday.
> The exam covers §§1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, and 2.9.

» Comments on mid-semester reviews on Piazza.

v

WeBWorK 2.1, 2.2, 2.3 are due today at 11:59pm.

» The quiz on Friday covers §§2.1, 2.2, 2.3.

» My office is Skiles 244. Rabinoffice hours are today, 10-11, 12-1, and
2-3.



Section 2.8

Subspaces of R”



Motivation

Today we will discuss subspaces of R".

A subspace turns out to be the same as a span, except we don't know which
vectors it's the span of.

This arises naturally when you have, say, a plane through the origin in R® which
is not defined (a priori) as a span, but you still want to say something about it.

x+3y+z=0



Definition of Subspace

Definition

A subspace of R" is a subset V of R" satisfying:
1. The zero vector is in V. “not empty”
2. If uand v arein V, then u+ v is also in V. “closed under addition”
3. Ifuisin V and cisin R, then cuisin V. “closed under x scalars”

Fast-forward
Every subspace is a span, and every span is a subspace. ]

A subspace is a span of some vectors, but you haven't computed what those
vectors are yet.



Definition of Subspace

Definition

A subspace of R" is a subset V of R" satisfying:
1. The zero vector is in V. “not empty”
2. If uand v arein V, then u+ v is also in V. “closed under addition”
3. Ifuisin V and cisin R, then cuisin V. “closed under x scalars”

What does this mean?

> If visin V, then all scalar multiples of v are in V by (3). That is, the line
through v isin V.

> If u,v are in V, then xu and yv are in V for scalars x, y by (3). So
xu + yvisin V by (2). So Span{u, v} is contained in V.

> Likewise, if vi, vo,..., v, are all in V, then Span{vi,vo,..., v} is
contained in V: a subspace contains the span of any set of vectors in it.

If you pick enough vectors in V/, eventually their span will fill up V, so:

[ A subspace is a span of some set of vectors in it. ]




Examples

Example
A line L through the origin: this contains L
the span of any vector in L.

Example

A plane P through the origin: this con-
tains the span of any vectors in P. ('

Example
All of R": this contains 0, and is closed under addition and scalar multiplication.

Example
The subset {0}: this subspace contains only one vector.

Note these are all pictures of spans! (Line, plane, space, etc.)



Subsets and Subspaces
They aren’t the same thing

A subset of R” is any collection of vectors whatsoever.
All of the following non-examples are still subsets.

A subspace is a special kind of subset, which satisfies the three defining
properties.

Subset: yes
Subspace: no



Non-Examples

Non-Example

A line L (or any other set) that doesn't
contain the origin is not a subspace.
Fails: 1.

Non-Example

A circle C is not a subspace. Fails:

1,2,3. Think: a circle isn't a “linear
space.”

Non-Example

The first quadrant in R? is not a sub-
space. Fails: 3 only.

Non-Example

A line union a plane in R® is not a sub-
space. Fails: 2 only.

N




Spans are Subspaces

Theorem
Any Span{vi, vz, ..., v,} is a subspace.

1

Every subspace is a span, and every span is a subspace. ]
Definition
If V =Span{vi, vo,...,Vva}, we say that V is the subspace generated by or
spanned by the vectors vi, v, ..., Vy.
Check:

1. 0=0v1 + 0w, +--- 4+ Ov, is in the span.
2. If, say, u = 3vi + 4w, and v = —v; — 2, then

ut+tv=3vi+4v, —vi — 2w = 2v; + 2w

is also in the span.

3. Similarly, if u is in the span, then so is cu for any scalar c.



Poll

Poll
Is the empty set {} a subspace? If not, which property(ies) does it fail? ]

The zero vector is not contained in the empty set, so it is not a subspace.

Question: What is the difference between {} and {0}?



Subspaces

Verification

Let V = {(Z) in R? ] ab = 0}. Let's check if V is a subspace or not.

1. Does V contain the zero vector? (;) = (g) — ab=0 /

3. Is V closed under scalar multiplication?

Let () be (an unknown vector) in V.
This means: a and b are numbers such that ab = 0.
Let ¢ be a scalar. Is ¢(;) = (§) in V?

This means: (ca)(cb) = 0. / v

Well, (ca)(cb) = c?(ab) = c?(0) =0

2. Is V closed under addition?

Let () and (Zi) be (unknown vectors) in V.

This means: ab = 0,and a’b’ = 0.

5 () + () = () in v?

This means: (a+ a')(b+ b') = 0.

This is not true for all such a,a’, b, b’: for instance, ((1)) and (?) are in V,
but their sum (é) + ((1)) = G) is not in V, because 1-1 # 0. x

vyVYyVvYYyYy

YyVYyVvYVvYyYy

We conclude that V is not a subspace. A picture is above. (It doesn’t look like
a span.)



Column Space and Null Space

An m X n matrix A naturally gives rise to two subspaces.
Definition
» The column space of A is the subspace of R™ spanned by the columns of
A. It is written Col A.

> The null space of A is the set of all solutions of the homogeneous
equation Ax = 0:
Nul A= {x in R" | Ax = 0}.

This is a subspace of R".
The column space is defined as a span, so we know it is a subspace. It is the
range (as opposed to the codomain) of the transformation T(x) = Ax.
Check that the null space is a subspace:
1. 0is in Nul A because A0 = 0.

2. If uand v are in Nul A, then Au =0 and Av = 0. Hence
A(u+v)=Au+ Av =0,
so u+ v isin Nul A.

3. If uis in Nul A, then Au = 0. For any scalar ¢, A(cu) = cAu=0. So cu is
in Nul A.



Column Space and Null Space

Example

11
Let A=1[1 1
11

Let's compute the column space:
Col A
1 1 1
Col A = Span 11,1 = Span 1 . :
1 1 1 :
This is a line in R®, /
Let's compute the null space:

The reduced row echelon form of A is Nul A

o O =
o O

This gives the equation x +y =0, or

X =—y parametric vector form x -1
WW f— .

y=y <Y> g ( 1 >

Hence the null space is Span{(7')}, a line in R.



The Null Space is a Span

The column space of a matrix A is defined to be a span (of the columns).

The null space is defined to be the solution set to Ax = 0. It is a subspace, so
it is a span.

Question

How to find vectors which span the null space?

Answer: Parametric vector form! We know that the solution set to Ax = 0 has
a parametric form that looks like

1 -2\ . 1 —2
5 3 if, say, x3 and xs 5 3
X3 1 + X 0 are the free Nul A = Span 1] 0
0 1 variables. So 0 1

Refer back to the slides for §1.5 (Solution Sets).

Note: It is much easier to define the null space first as a subspace, then find
spanning vectors later, if we need them. This is one reason subspaces are so
useful.



Subspaces

Summary

,—‘ How do you check if a subset is a subspace? }

» Is it a span? Can it be written as a span?

» Can it be written as the column space of a matrix?
» Can it be written as the null space of a matrix?

> Is it all of R" or the zero subspace {0}?

» Can it be written as a type of subspace that we'll learn about later
(eigenspaces, ...)?

If so, then it's automatically a subspace.
If all else fails:

» Can you verify directly that it satisfies the three defining
properties?




Basis of a Subspace

What is the smallest number of vectors that are needed to span a subspace?

7

\.

Definition
Let V be a subspace of R". A basis of V is a set of vectors {vi,v2,...,Vn} in
V such that:

1. V =Span{vi,va,...,Vm}, and
2. {vi,va,...,Vm} is linearly independent.

The number of vectors in a basis is the dimension of V, and is written dim V.

J

Why is a basis the smallest number of vectors needed to span?

Recall: linearly independent means that every time you add another vector, the
span gets bigger.

Hence, if we remove any vector, the span gets smaller: so any smaller set can't
span V.

Important

A subspace has many different bases, but they all have the same
number of vectors (see the exercises in §2.9).
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Bases of R?

Question
What is a basis for R?? &
We need two vectors that span R? and are lin- |
€1

early independent. {e1, e} is one basis.
1. They span: (}) = ae1 + be,.

2. They are linearly independent because
they are not collinear.

Question
What is another basis for R?? )

Any two nonzero vectors that are not collinear.
1\ 1\ . / : 1
{(5), (1)} is also a basis. ()
1. They span: (§1) has a pivot in every row.

2. They are linearly independent: (§1) has a
pivot in every column.



Bases of R”

The unit coordinate vectors

1 0 0
0 1 0
€1 = ) € = ) L) €h—1 = ) €n =
0 0 1
0 0 0

are a basis for R".
1. They span: I, has a pivot in every row.

2. They are linearly independent: [, has a pivot in every column.

In general: {vi,vz,..., vy} is a basis for R" if and only if the matrix

has a pivot in every row and every column, i.e. if A is invertible.

Sanity check: we have shown that dimR" = n.



Basis of a Subspace

Example
Example
Let
X -3 0
v=<{|y| inR|x+3y+z=0 B= 1], (1 .
z 0 -3
Verify that B is a basis for V. (So dim V = 2: it is a plane.) [interactive]

0. In V: both vectors are in V because
—-3+3(1)+0=0 and O0+3(1)+(-3)=0.

x
1. Span: If (y) isin V, then y = —1(x +z), so

z
X X -3 5 0
z 0 -3
2. Linearly independent:
-3 0 —3a 0
C1 1 + o 1 =0 = at+el|l =10 — ¢ =0 =0.
0 -3 -3 0


http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/lincombo.html?v1=-3,1,0&v2=0,1,-3&range=5

Basis for Nul A

Fact

The vectors in the parametric vector form of the general solution
to Ax = 0 always form a basis for Nul A.

Example

1 2 0 -1 rref 10 -8 —7
A=|-2 -3 4 5 01 4 3
2 4 0 -2 00 0 0

pa\rlzrcntgtrrlc 8 7 basis of 8 7

form —4 -3 Nul A —4 -3

X = X3 1 + X4 0 AT 1 ’ 0

0 1 0 1

1. The vectors span Nul A by construction (every solution to Ax = 0 has this
form).

2. Can you see why they are linearly independent? (Look at the last two
rows.)



Basis for Col A

Fact

The pivot columns of A always form a basis for Col A.

Warning: | mean the pivot columns of the original matrix A, not the
row-reduced form. (Row reduction changes the column space.)

Example
1 2,0 -1 rref 1 0 -8 -7
A=| -2 -3 4 5 M 0 1 4 3
2 4/ 0 -2 0 0 0 0
W
So a basis for Col A is
1 2
21, (-3
2 4

Why? See slides on linear independence.



Summary

> A subspace is the same as a span of some number of vectors, but we
haven’'t computed the vectors yet.

» To any matrix is associated two subspaces, the column space and the null
space:
Col A = the span of the columns of A
Nul A = the solution set of Ax = 0.

> A basis of a subspace is a minimal set of spanning vectors; the dimension
of V is the number of vectors in any basis.

» The pivot columns form a basis for Col A, and the parametric vector form
produces a basis for Nul A.

Warning

These are not the official definitions! ]




