Math 1553 Worksheet §2.8

1. Find bases for the column space and the null space of

$$
A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.
$$

Solution.

Finding a basis for Nul*A* means finding the parametric vector form of the solution to $Ax = 0$. First we row reduce:

$$
\begin{pmatrix} 0 & 1 & -3 & 1 & 0 \ 1 & -1 & 8 & -7 & 1 \ -1 & -2 & 1 & 4 & -1 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & 5 & -6 & 1 \ 0 & 1 & -3 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 \end{pmatrix},
$$

so x_3, x_4, x_5 are free, and

$$
\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -5x_3 + 6x_4 - x_5 \\ 3x_3 - x_4 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = x_3 \begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.
$$

Therefore, a basis for Null A is
$$
\begin{pmatrix} -5 \\ 3 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 6 \\ -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.
$$

To find a basis for Col *A*, we use the pivot columns as they were written in the *original* matrix *A*, *not its RREF*. These are the first two columns:

$$
\left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix} \right\}.
$$

2. Consider the following vectors in **R** 3 :

$$
b_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \qquad u = \begin{pmatrix} 1 \\ 10 \\ 7 \end{pmatrix}
$$

Let $V = \text{Span}\{b_1, b_2\}.$

- **a**) Explain why $B = \{b_1, b_2\}$ is a basis for *V*.
- **b)** Determine if *u* is in *V*.
- **c**) Find a vector b_3 such that $\{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .

Solution.

- **a)** A quick check shows that b_1 and b_2 are linearly independent (verify!), and we already know they span *V*, so $\{b_1, b_2\}$ is a basis for *V*.
- **b**) *u* is in *V* if and only if $c_1b_1 + c_2b_2 = u$ for some c_1 and c_2 (in which case $[u]_{\mathcal{B}} =$ $\int c_1$ *c*2 λ looking ahead to problem 5(b)). We form the augmented matrix $\left(\begin{array}{cc|c} b_1 & b_2 & u \end{array}\right)$ and see if the system is consistent.

$$
\begin{pmatrix} 2 & 1 & 1 \ 2 & 4 & 10 \ 2 & 3 & 7 \end{pmatrix} \xrightarrow[R_3=R_3-R_1]{R_2=R_2-R_1} \begin{pmatrix} 2 & 1 & 1 \ 0 & 3 & 9 \ 0 & 2 & 6 \end{pmatrix} \xrightarrow[R_3=R_3]{R_3=R_3-\frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 3 \ 0 & 0 & 0 \end{pmatrix}.
$$

The right column is not a pivot column, so the system is consistent, therefore *u* is in Span $\{b_1, b_2\}$: in fact, $u = -b_1 + 3b_2$.

c) If we choose b_3 which is not in Span $\{b_1, b_2\}$, then $\{b_1, b_2, b_3\}$ is linearly independent by the increasing span criterion. Any three linearly independent vectors span \mathbf{R}^3 : the matrix with columns b_1, b_2, b_3 is square, so if there is a pivot in every column, then there is a pivot in every row.

We could choose
$$
b_3 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}
$$
, since $\begin{pmatrix} b_1 & b_2 \end{pmatrix} b_3$ is inconsistent:
\n
$$
\begin{pmatrix} 2 & 1 & 1 \\ 2 & 4 & 0 \\ 2 & 3 & 0 \end{pmatrix} \xrightarrow{R_2 = R_2 - R_1} \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 0 & 2 & -1 \end{pmatrix} \xrightarrow{R_3 = R_3 - \frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \\ 0 & 3 & -1 \\ 0 & 0 & -1/3 \end{pmatrix}
$$

.

- **3.** For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
	- **a**) If *A* is an $n \times n$ matrix and Col $A = \mathbb{R}^n$, then $Ax = 0$ has a nontrivial solution.
	- **b**) If *A* is an $m \times n$ matrix and $Ax = 0$ has only the trivial solution, then the columns of *A* form a basis for **R** *m*.
	- **c)** Give an example of 2 × 2 matrix whose column space is the same as its null space.

Solution.

- **a**) No. Since Col(*A*) = \mathbb{R}^n , the linear transformation $T(x) = Ax$ from \mathbb{R}^n to \mathbb{R}^n is onto, hence *T* is one-to-one, so $Ax = 0$ has only the trivial solution.
- **b**) Maybe. If $Ax = 0$ has only the trivial solution and $m = n$, then *A* is invertible, so the columns of *A* are linearly independent and span **R** *m*.

If $m > n$ then the statement is false. For example, $A =$ $(1 \ 0)$ 0 1 $\begin{pmatrix} 1 & 0 \ 0 & 1 \ 0 & 0 \end{pmatrix}$ has only the

trivial solution for $Ax = 0$, but its columns form only a 2-plane within \mathbb{R}^3 .

c) Take
$$
A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}
$$
. Its null space and column space are $\text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

4. In each case, determine whether the given set is a subspace of **R** 4 . If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.

a)
$$
V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbb{R}^4 \mid x + y = 0 \text{ and } z + w = 0 \right\}
$$

b) $W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbb{R}^4 \mid xy - zw = 0 \right\}$

Solution.

a) The condition " $x + y = 0$ and $z + w = 0$ " means that the vectors in *V* are the solutions to the system of homogeneous equations

$$
x + y = 0
$$

$$
z + w = 0.
$$

In other words, *V* is the null space of the matrix

$$
\begin{pmatrix}\n1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1\n\end{pmatrix}.
$$

A null space is automatically a subspace, so *V* is a subspace.

Alternatively, we can verify the subspace properties:

(1) The zero vector is in *V*, since $0 + 0 = 0$ and $0 + 0 = 0$.

(2) If
$$
u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}
$$
 and $v = \begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ w_2 \end{pmatrix}$ are in *V*. Compute $u + v = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \\ w_1 + w_2 \end{pmatrix}$.
\nAre $(x_1 + x_2) + (y_1 + y_2) = 0$ and $(z_1 + z_2) + (w_1 + w_2) = 0$? Yes:
\n $(x_1 + x_2) + (y_1 + y_2) = (x_1 + y_1) + (x_2 + y_2) = 0 + 0 = 0$,
\n $(z_1 + z_2) + (w_1 + w_2) = (z_1 + w_1) + (z_2 + w_2) = 0 + 0 = 0$.
\n(3) If $u = \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ w_1 \end{pmatrix}$ is in *V* then so is *cu* for any scalar:
\n $cx_1 + cy_1 = c(x_1 + y_1) = c(0) = 0$, $cz_1 + cw_1 = c(z_1 + w_1) = c(0) = 0$.

b) Not a subspace. Note *u* = $\sqrt{ }$ \mathbf{I} \mathbf{I} 1 0 0 0 λ \int and $v =$ $\sqrt{ }$ \mathbf{I} \mathbf{I} 0 1 0 0 λ are in *W*, but $u + v$ is not in *W*.

$$
u + v = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \qquad 1 \cdot 1 - 0 \cdot 0 = 1 \neq 0. \quad (W \text{ is not closed under addition})
$$

- **5.** This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other. **a**) True or false: If *A* is a 3×100 matrix of rank 2, then dim(Nul*A*) = 97.
	- **b)** For *u* and *B* from problem 2, find $[u]_B$ (the *B*-coordinates of *u*).

c) Let
$$
\mathcal{D} = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}
$$
, and suppose $[x]_{\mathcal{D}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find x.

Solution.

- **a)** No. By the Rank Theorem, $rank(A) + dim(NulA) = 100$, so $dim(NulA) = 98$.
- **b**) *u* is in *V* if and only if $c_1b_1 + c_2b_2 = u$ for some c_1 and c_2 , in which case $[u]_{\mathcal{B}} =$ $\int c_1$ *c*2). We form the augmented matrix $\left(b_1 \quad b_2 \mid u\right)$ and solve:

$$
\begin{pmatrix} 2 & 1 & 1 \ 2 & 4 & 10 \ 2 & 3 & 7 \end{pmatrix} \xrightarrow{R_2=R_2-R_1} \begin{pmatrix} 2 & 1 & 1 \ 0 & 3 & 9 \ 0 & 2 & 6 \end{pmatrix} \xrightarrow{R_3=R_3-\frac{2}{3}R_2} \begin{pmatrix} 2 & 1 & 1 \ 0 & 1 & 3 \ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1=R_1-R_2} \begin{pmatrix} 1 & 0 & -1 \ 0 & 1 & 3 \ 0 & 0 & 0 \end{pmatrix}.
$$

We found $c_1 = -1$ and $c_2 = 3$. This means $-b_1 + 3b_2 = u$, so $[u]_B = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$ 3 λ .

c) From
$$
[x]_D = \begin{pmatrix} -1 \\ 3 \end{pmatrix}
$$
, we have

$$
x = -d_1 + 3d_2 = -\begin{pmatrix} -2 \\ 1 \end{pmatrix} + 3\begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix} + \begin{pmatrix} 9 \\ 3 \end{pmatrix} = \begin{pmatrix} 11 \\ 2 \end{pmatrix}.
$$