Math 1553 Worksheet §2.8

1. Find bases for the column space and the null space of

$$A = \begin{pmatrix} 0 & 1 & -3 & 1 & 0 \\ 1 & -1 & 8 & -7 & 1 \\ -1 & -2 & 1 & 4 & -1 \end{pmatrix}.$$

2. Consider the following vectors in \mathbb{R}^3 :

$$b_1 = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \qquad b_2 = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix} \qquad u = \begin{pmatrix} 1 \\ 10 \\ 7 \end{pmatrix}$$

Let $V = \text{Span}\{b_1, b_2\}.$

- a) Explain why $\mathcal{B} = \{b_1, b_2\}$ is a basis for V.
- **b)** Determine if u is in V.
- c) Find a vector b_3 such that $\{b_1, b_2, b_3\}$ is a basis of \mathbb{R}^3 .
- **3.** For (a) and (b), answer "yes" if the statement is always true, "no" if it is always false, and "maybe" otherwise.
 - a) If A is an $n \times n$ matrix and Col $A = \mathbb{R}^n$, then Ax = 0 has a nontrivial solution.
 - **b)** If *A* is an $m \times n$ matrix and Ax = 0 has only the trivial solution, then the columns of *A* form a basis for \mathbb{R}^m .
 - c) Give an example of 2×2 matrix whose column space is the same as its null space.
- **4.** In each case, determine whether the given set is a subspace of \mathbb{R}^4 . If it is a subspace, justify why. If it is not a subspace, state a subspace property that it fails.

a)
$$V = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbf{R}^4 \mid x + y = 0 \text{ and } z + w = 0 \right\}$$

b)
$$W = \left\{ \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} \text{ in } \mathbb{R}^4 \mid xy - zw = 0 \right\}$$

- 5. This problem covers section 2.9. Parts (a), (b), and (c) are unrelated to each other.
 - a) True or false: If A is a 3×100 matrix of rank 2, then dim(NulA) = 97.
 - **b)** For u and \mathcal{B} from problem 2, find $[u]_{\mathcal{B}}$ (the \mathcal{B} -coordinates of u).

c) Let
$$\mathcal{D} = \left\{ \begin{pmatrix} -2 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 1 \end{pmatrix} \right\}$$
, and suppose $[x]_{\mathcal{D}} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$. Find x .