- ► The second midterm is on this Friday, October 20.
 - ► The exam covers §§1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, and 2.9.
 - About half the problems will be conceptual, and the other half computational.
 - Note that this midterm covers more material than the first!
- ▶ There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ± 1 –2 problems).
- ► Study tips:
 - There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
 - Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
 - ▶ Sit down to do the practice midterm in 50 minutes, with no notes.
 - Come to office hours!
- WeBWorK 2.8, 2.9 are due Wednesday at 11:59pm.
- ▶ Double Rabinoffice hours this week: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.
- ▶ **TA review session**: Wednesday, 7:15–9pm, Culc 144.
- Suggest topics for Wednesday's lecture on Piazza.

Section 2.9

Dimension and Rank

Coefficients of Basis Vectors

Recall: a **basis** of a subspace V is a set of vectors that *spans* V and is *linearly independent*.

I emma like a theorem, but less substantial

If $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

for *unique* coefficients c_1, c_2, \ldots, c_m .

Bases as Coordinate Systems

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbf{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

Observe: the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

We can go backwards: given any basis \mathcal{B} , we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B} .

Definition

Let $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x = c_1v_1 + c_2v_2 + \dots + c_mv_m$. The coefficients c_1, c_2, \dots, c_m are the **coordinates of** x **with respect to** \mathcal{B} . The \mathcal{B} -coordinate vector of x is the vector

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{in } \mathbf{R}^m.$$

In other words, a basis gives a coordinate system on V.

Bases as Coordinate Systems Example 1

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathcal{B} = \{v_1, v_2\}, \quad \ V = \mathsf{Span}\{v_1, v_2\}.$$

Verify that ${\cal B}$ is a basis:

Question: If
$$[w]_{\mathcal{B}} = {5 \choose 2}$$
, then what is w ? [interactive]

Question: Find the
$$\mathcal{B}$$
-coordinates of $w = \begin{pmatrix} 5 \\ 3 \\ 5 \end{pmatrix}$. [interactive]

Bases as Coordinate Systems Example 2

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \mathsf{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V. [interactive]

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 4 \\ 11 \\ 8 \end{pmatrix}$. [interactive]

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then

$$\begin{bmatrix} [x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$$

Finding the \mathcal{B} -coordinates for x means solving the vector equation

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$$

in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix

$$\begin{pmatrix} | & | & & | & | \\ v_1 & v_2 & \cdots & v_m & x \\ | & | & & | & | \end{pmatrix}.$$

Question: What happens if you try to find the \mathcal{B} -coordinates of x not in V?

Bases as Coordinate Systems Picture

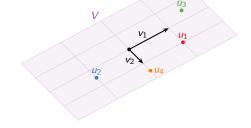
Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

These form a basis ${\cal B}$ for the plane

$$V=\mathsf{Span}\{\textit{v}_1,\textit{v}_2\}$$

in \mathbb{R}^3 .



Question: Estimate the \mathcal{B} -coordinates of these vectors:

[interactive]

$$[\underline{u_1}]_{\mathcal{B}} = [\underline{u_2}]_{\mathcal{B}} = [\underline{u_3}]_{\mathcal{B}} = [\underline{u_4}]_{\mathcal{B}} =$$

Choosing a basis \mathcal{B} and using \mathcal{B} -coordinates lets us label the points of V with element of \mathbf{R}^2 .

The Rank Theorem

Recall:

- ightharpoonup The **dimension** of a subspace V is the number of vectors in a basis for V.
- ▶ A basis for the column space of a matrix A is given by the pivot columns.
- ▶ A basis for the null space of *A* is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

```
rank A = \dim \operatorname{Col} A = \operatorname{the} number of columns with pivots \dim \operatorname{Nul} A = \operatorname{the} number of free variables = \operatorname{the} number of columns without pivots.
```

Rank Theorem

If A is an $m \times n$ matrix, then

```
\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n = \operatorname{the number of columns of } A.
```

In other words, [interactive 1] [interactive 2] (dimension of column span) + (dimension of solution set) = (number of variables).

The Rank Theorem



Poll

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- ▶ Any *m* linearly independent vectors in *V* form a basis for *V*.
- ▶ Any *m* vectors that span *V* form a basis for *V*.

Upshot

If you already know that dim V=m, and you have m vectors $\mathcal{B}=\{v_1,v_2,\ldots,v_m\}$ in V, then you only have to check *one* of

- 1. \mathcal{B} is linearly independent, or
- 2. \mathcal{B} spans V

in order for $\mathcal B$ to be a basis.

Example: any three linearly independent vectors form a basis for \mathbb{R}^3 .

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

- A is invertible.
 - 2. T is invertible.
 - 3. A is row equivalent to I_n .
 - 4. A has n pivots.
 - 5. Ax = 0 has only the trivial solution.
 - 6. The columns of \boldsymbol{A} are linearly independent.
 - 7 T is one-to-one
- 14. The columns of A form a basis for \mathbb{R}^n .
- **15**. Col $A = \mathbf{R}^n$.
- 16. $\dim \operatorname{Col} A = n$.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- **19**. $\dim \text{Nul } A = 0$.

These are equivalent to the previous conditions by the Rank Theorem and the Basis Theorem.

- Ax = b is consistent for all b in Rⁿ.
- 9. The columns of A span \mathbb{R}^n .
- 10. *T* is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.

Summary

• If $\mathcal B$ is a basis for a subspace, we can write a vector in the subspace as a linear combination of the basis vectors, with *unique* coefficients:

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m.$$

▶ The coefficients are the \mathcal{B} -coordinates of x:

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}.$$

- ▶ Finding the *B*-coordinates means solving the vector equation above.
- The rank theorem says the dimension of the column space of a matrix, plus the dimension of the null space, is the number of columns of the matrix
- ► The basis theorem says that if you already know that dim V = m, and you have m vectors in V, then you only have to check if they span or they're linearly independent to know they're a basis.
- There are more conditions of the Invertible Matrix Theorem.