Announcements Monday, October 16

- The second midterm is on this Friday, October 20.
 - ▶ The exam covers §§1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8, and 2.9.
 - About half the problems will be conceptual, and the other half computational.
 - Note that this midterm covers more material than the first!
- ▶ There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ±1-2 problems).
- Study tips:
 - There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
 - Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
 - Sit down to do the practice midterm in 50 minutes, with no notes.
 - Come to office hours!
- ▶ WeBWorK 2.8, 2.9 are due Wednesday at 11:59pm.
- Double Rabinoffice hours this week: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.
- **TA review session**: Wednesday, 7:15–9pm, Culc 144.
- Suggest topics for Wednesday's lecture on Piazza.

Section 2.9

Dimension and Rank

Recall: a **basis** of a subspace V is a set of vectors that *spans* V and is *linearly independent*.

Lemma like a theorem, but less substantial If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V, then any vector x in V can be written as a linear combination

 $x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$

for *unique* coefficients c_1, c_2, \ldots, c_m .

We know x is a linear combination of the v_i because they span V. Suppose that we can write x as a linear combination with different coefficients:

$$x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m$$
$$x = c'_1 v_1 + c'_2 v_2 + \dots + c'_m v_m$$

Subtracting:

$$0 = x - x = (c_1 - c_1')v_1 + (c_2 - c_2')v_2 + \dots + (c_m - c_m')v_m$$

Since v_1, v_2, \ldots, v_m are linearly independent, they only have the trivial linear dependence relation. That means each $c_i - c'_i = 0$, or $c_i = c'_i$.

Bases as Coordinate Systems

The unit coordinate vectors e_1, e_2, \ldots, e_n form a basis for \mathbb{R}^n . Any vector is a unique linear combination of the e_i :

$$v = \begin{pmatrix} 3 \\ 5 \\ -2 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = 3e_1 + 5e_2 - 2e_3.$$

Observe: the coordinates of v are exactly the coefficients of e_1, e_2, e_3 .

We can go backwards: given any basis \mathcal{B} , we interpret the coefficients of a linear combination as "coordinates" with respect to \mathcal{B} .

Definition

Let $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ be a basis of a subspace V. Any vector x in V can be written uniquely as a linear combination $x = c_1v_1 + c_2v_2 + \dots + c_mv_m$. The coefficients c_1, c_2, \dots, c_m are the **coordinates of** x **with respect to** \mathcal{B} . The \mathcal{B} -coordinate vector of x is the vector

$$[\mathbf{x}]_{\mathcal{B}} = \begin{pmatrix} \mathbf{c}_1 \\ \mathbf{c}_2 \\ \vdots \\ \mathbf{c}_m \end{pmatrix} \quad \text{in } \mathbf{R}^m.$$

In other words, a basis gives a *coordinate system* on V.

Bases as Coordinate Systems Example 1

Let
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, $\mathcal{B} = \{v_1, v_2\}$, $V = \mathsf{Span}\{v_1, v_2\}$.

Verify that \mathcal{B} is a basis: Span: by definition $V = \text{Span}\{v_1, v_2\}$. Linearly independent: because they are not multiples of each other.

Question: If $[w]_{\mathcal{B}} = {5 \choose 2}$, then what is w? [interactive] $[w]_{\mathcal{B}} = \begin{pmatrix} 5\\2 \end{pmatrix}$ means $w = 5v_1 + 2v_2 = 5 \begin{pmatrix} 1\\0\\1 \end{pmatrix} + 2 \begin{pmatrix} 1\\1\\1 \end{pmatrix} = \begin{pmatrix} 7\\2\\7 \end{pmatrix}$. Question: Find the \mathcal{B} -coordinates of $w = \begin{pmatrix} 5\\ 3\\ r \end{pmatrix}$. [interactive] We have to solve the vector equation $w = c_1v_1 + c_2v_2$ in the unknowns c_1, c_2 . $\begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 1 & 1 & 5 \end{pmatrix} \xrightarrow{} \begin{pmatrix} 1 & 1 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{} \xrightarrow{} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{pmatrix}$ So $c_1 = 2$ and $c_2 = 3$, so $w = 2v_1 + 3v_2$ and $[w]_{\mathcal{B}} = \binom{2}{3}$.

Bases as Coordinate Systems Example 2

Let
$$v_1 = \begin{pmatrix} 2 \\ 3 \\ 2 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$, $v_3 = \begin{pmatrix} 2 \\ 8 \\ 6 \end{pmatrix}$, $V = \text{Span}\{v_1, v_2, v_3\}$.

Question: Find a basis for V. [interactive] V is the column span of the matrix

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 3 & 1 & 8 \\ 2 & 1 & 6 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}.$$

A basis for the column span is formed by the pivot columns: $\mathcal{B} = \{v_1, v_2\}$.

Question: Find the
$$\mathcal{B}$$
-coordinates of $x = \begin{pmatrix} 4\\11\\8 \end{pmatrix}$. [interactive]

We have to solve $x = c_1 v_1 + c_2 v_2$.

$$\begin{pmatrix} 2 & -1 & | & 4 \\ 3 & 1 & | & 11 \\ 2 & 1 & | & 8 \end{pmatrix} \xrightarrow{\text{row reduce}} \begin{pmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{pmatrix}$$

So $x = 3v_1 + 2v_2$ and $[x]_{\mathcal{B}} = \binom{3}{2}$.

Bases as Coordinate Systems

Summary

If $\mathcal{B} = \{v_1, v_2, \dots, v_m\}$ is a basis for a subspace V and x is in V, then $[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix} \quad \text{means} \quad x = c_1 v_1 + c_2 v_2 + \dots + c_m v_m.$ Finding the \mathcal{B} -coordinates for x means solving the vector equation $x = c_1 v_1 + c_2 v_2 + \cdots + c_m v_m$ in the unknowns c_1, c_2, \ldots, c_m . This (usually) means row reducing the augmented matrix $\left(\begin{array}{cccccccc} | & | & | & | & | \\ v_1 & v_2 & \cdots & v_m & x \\ | & | & | & | & | \end{array}\right).$

Question: What happens if you try to find the \mathcal{B} -coordinates of x not in V? You end up with an inconsistent system: V is the span of v_1, v_2, \ldots, v_m , and if x is not in the span, then $x = c_1v_1 + c_2v_2 + \cdots + c_mv_m$ has no solution.

Bases as Coordinate Systems

Picture

Let

$$v_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} \quad v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

These form a basis ${\mathcal B}$ for the plane

$$V = \mathsf{Span}\{v_1, v_2\}$$

V V_1 U_1 V_2 U_4

in \mathbf{R}^3 .

Question: Estimate the \mathcal{B} -coordinates of these vectors:

[interactive]

$$[\mathbf{u}_1]_{\mathcal{B}} = \begin{pmatrix} 1\\1 \end{pmatrix} \qquad [\mathbf{u}_2]_{\mathcal{B}} = \begin{pmatrix} -1\\\frac{1}{2} \end{pmatrix} \qquad [\mathbf{u}_3]_{\mathcal{B}} = \begin{pmatrix} \frac{3}{2}\\-\frac{1}{2} \end{pmatrix} \qquad [\mathbf{u}_4]_{\mathcal{B}} = \begin{pmatrix} 0\\\frac{3}{2} \end{pmatrix}$$

Choosing a basis \mathcal{B} and using \mathcal{B} -coordinates lets us label the points of V with element of \mathbf{R}^2 .

The Rank Theorem

Recall:

- The dimension of a subspace V is the number of vectors in a basis for V.
- A basis for the column space of a matrix A is given by the pivot columns.
- ► A basis for the null space of A is given by the vectors attached to the free variables in the parametric vector form.

Definition

The **rank** of a matrix A, written rank A, is the dimension of the column space Col A.

Observe:

rank $A = \dim \operatorname{Col} A =$ the number of columns with pivots dim Nul A = the number of free variables = the number of columns without pivots.

Rank Theorem

If A is an $m \times n$ matrix, then

 $\operatorname{rank} A + \operatorname{dim} \operatorname{Nul} A = n = \operatorname{the number of columns of } A.$

In other words, [interactive 1] [interactive 2]

(dimension of column span) + (dimension of solution set) = (number of variables).

The Rank Theorem Example

$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ -2 & -3 & 4 & 5 \\ 2 & 4 & 0 & -2 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -8 & -7 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

basis of Col A free variables

A basis for Col A is

$$\left\{ \begin{pmatrix} 1\\-2\\2 \end{pmatrix}, \begin{pmatrix} 2\\-3\\4 \end{pmatrix} \right\},$$

so rank $A = \dim \operatorname{Col} A = 2$.

Since there are two free variables x_3 , x_4 , the parametric vector form for the solutions to Ax = 0 is

$$x = x_3 \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \xrightarrow{\text{basis for Nul } A} \left\{ \begin{pmatrix} 8 \\ -4 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 7 \\ -3 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Thus dim Nul A = 2.

The Rank Theorem says 2 + 2 = 4.

- Poll

Let A and B be 3×3 matrices. Suppose that rank(A) = 2 and rank(B) = 2. Is it possible that AB = 0? Why or why not?

If AB = 0, then ABx = 0 for every x in \mathbf{R}^3 .

This means A(Bx) = 0, so Bx is in Nul A.

This is true for every x, so Col B is contained in Nul A.

But dim Nul A = 1 and dim Col B = 2, and a 1-dimensional space can't contain a 2-dimensional space.

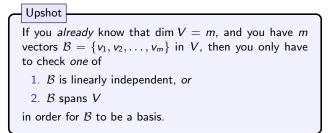
Hence it can't happen.

The Basis Theorem

Basis Theorem

Let V be a subspace of dimension m. Then:

- Any m linearly independent vectors in V form a basis for V.
- Any m vectors that span V form a basis for V.



Example: any three linearly independent vectors form a basis for \mathbf{R}^3 .

The Invertible Matrix Theorem

Addenda

The Invertible Matrix Theorem

Let A be an $n \times n$ matrix, and let $T : \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation T(x) = Ax. The following statements are equivalent.

1. A is invertible.

- 2. T is invertible.
- 3. A is row equivalent to I_n .
- 4. A has n pivots.
- 5. Ax = 0 has only the trivial solution.
- 6. The columns of A are linearly independent.
- 7. T is one-to-one.

- 8. Ax = b is consistent for all b in \mathbb{R}^n .
- 9. The columns of A span \mathbb{R}^n .
- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbf{R}^n .
- **15**. Col $A = \mathbf{R}^{n}$.
- 16. dim Col A = n.
- 17. rank A = n.
- 18. Nul $A = \{0\}$.
- **19**. dim Nul A = 0.

These are equivalent to the previous conditions by the Rank Theorem and the Basis Theorem.

Summary

If B is a basis for a subspace, we can write a vector in the subspace as a linear combination of the basis vectors, with *unique* coefficients:

$$x = c_1v_1 + c_2v_2 + \cdots + c_mv_m.$$

► The coefficients are the *B*-coordinates of *x*:

$$[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}.$$

- \blacktriangleright Finding the \mathcal{B} -coordinates means solving the vector equation above.
- The rank theorem says the dimension of the column space of a matrix, plus the dimension of the null space, is the number of columns of the matrix.
- The basis theorem says that if you already know that dim V = m, and you have m vectors in V, then you only have to check if they span or they're linearly independent to know they're a basis.
- There are more conditions of the Invertible Matrix Theorem.