- \blacktriangleright The second midterm is on this Friday, October 20.
	- The exam covers $\S 1.7, 1.8, 1.9, 2.1, 2.2, 2.3, 2.8,$ and 2.9.
	- \triangleright About half the problems will be conceptual, and the other half computational.
	- \triangleright Note that this midterm covers more material than the first
- \triangleright There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be $\pm 1-2$ problems).
- \blacktriangleright Study tips:
	- \triangleright There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
	- \triangleright Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
	- \triangleright Sit down to do the practice midterm in 50 minutes, with no notes.
	- \triangleright Come to office hours!
- \blacktriangleright WeBWorK 2.8, 2.9 are due today at 11:59pm.
- **Double Rabinoffice hours this week:** Monday, $1-3$ pm; Tuesday, $9-11$ am; Thursday, 9–11am; Thursday, 12–2pm.
- \triangleright TA review session: Today, 7:15-9pm, Culc 144.

Midterm 2

Review Slides

Transformations Vocabulary

Definition

A **transformation** (or fu<mark>nction</mark> or $\textsf{map})$ from \textsf{R}^n to \textsf{R}^m is a rule $\mathcal T$ that assigns to each vector x in \mathbf{R}^n a vector $\mathcal{T}(x)$ in \mathbf{R}^m .

- \blacktriangleright **R**ⁿ is called the **domain** of T (the inputs).
- \blacktriangleright **R**^{*m*} is called the **codomain** of T (the outputs).
- For x in \mathbb{R}^n , the vector $T(x)$ in \mathbb{R}^m is the image of x under T. Notation: $x \mapsto T(x)$.
- If The set of all images $\{T(x) | x \text{ in } \mathbb{R}^n\}$ is the range of T.

Notation:

 $T: \mathbf{R}^n \longrightarrow \mathbf{R}^m$ means T is a transformation from \mathbf{R}^n to \mathbf{R}^m .

It may help to think of T as a "machine" that takes x as an input, and gives you $T(x)$ as the output.

Matrix Transformations

If A is an $m \times n$ matrix, then

 $T: \mathbb{R}^n \to \mathbb{R}^m$ defined by $T(x) = Ax$

is a matrix transformation.

These are the kinds of transformations we can use linear algebra to study, because they come from matrices.

Example:
$$
A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}
$$

$$
T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + 2y + 3z \\ 4x + 5y + 6z \end{pmatrix}
$$

(Note we've written a *formula* for T that doesn't a priori have anything to do with matrices.)

Here are some natural questions that one can ask about a general transformation (not just on the midterm, but in the real world too):

Question: What kind of vectors can you input into T? What kind of vectors do you get out? In other words, what are the domain and codomain?

Answer for $T(x) = Ax$: Inputs are in \mathbb{R}^n , where *n* is the number of *columns* of T. Outputs are in \mathbf{R}^m , where m is the number of rows of A. (Cf. previous slide.)

Question: For which b does $T(x) = b$ have a solution? In other words, what is the range of T?

Answer for $T(x) = Ax$: The range is Col A, the span of the columns: $T(x) = Ax$ is a linear combination of the columns of A.

Question: Is T one-to-one, onto, and/or invertible?

Answer for $T(x) = Ax$: on the next slides

One-to-one and onto

Definition

A transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ is:

- one-to-one if $T(x) = b$ has at most one solution for every b in \mathbf{R}^m
- \blacktriangleright onto if $T(x) = b$ has at *least* one solution for every b in \mathbf{R}^m

Picture: [\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/Axequalsb.html?show=true)

This is neither one-to-one nor onto.

- \triangleright Can you find two different solutions to $T(x) = 0$?
- **Can you find a b such that** $T(x) = b$ has no solution?

Picture: linteractivel

This is onto but not one-to-one.

Gan you find two different solutions to $T(x) = 0$?

Picture: [\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/Axequalsb.html?mat=1,-1:-2,1&x=1,1,1&show=true)

This is one-to-one and onto.

Theorem

Let $\mathcal{T} \colon \mathbf{R}^n \to \mathbf{R}^m$ be a matrix transformation with matrix A. Then the following are equivalent:

- \blacktriangleright \top is one-to-one
- \blacktriangleright $\tau(x) = b$ has one or zero solutions for every b in \mathbf{R}^m
- \blacktriangleright $Ax = b$ has a unique solution or is inconsistent for every b in \mathbf{R}^m
- $A x = 0$ has a unique solution
- \blacktriangleright The columns of A are linearly independent
- \blacktriangleright A has a pivot in column.

Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a matrix transformation with matrix A. Then the following are equivalent:

- \triangleright T is onto
- \blacktriangleright $\tau(x) = b$ has a solution for every b in \mathbf{R}^m
- Ax = b is consistent for every b in \mathbf{R}^m
- The columns of A span \mathbb{R}^m
- \blacktriangleright A has a pivot in every row

Question: How do you know if a transformation is a matrix transformation or not?

Definition

A transformation $\mathcal{T}\colon \mathbf{R}^n \to \mathbf{R}^m$ is linear if it satisfies the the equations

$$
T(u + v) = T(u) + T(v) \quad \text{and} \quad T(cv) = cT(v).
$$

for all vectors u, v in \mathbf{R}^n and all scalars $c. \ (\implies \mathcal{T}(0) = 0)$

Theorem

Let $\mathcal{T} \colon \mathsf{R}^n \to \mathsf{R}^m$ be a linear transformation. Then \mathcal{T} is a matrix transformation with matrix

$$
A = \left(\begin{array}{ccc} | & | & | \\ T(e_1) & T(e_2) & \cdots & T(e_n) \\ | & | & | \end{array} \right).
$$

So a linear transformation is a matrix transformation, where you haven't computed the matrix yet.

Important

You compute the columns of the matrix for T by plugging in e_1, e_2, \ldots, e_n .

Examples

Example: $T: \mathbf{R} \to \mathbf{R}$ defined by $T(x) = x + 1$.

This is not linear: $T(0) = 1 \neq 0$.

Example: $T: \mathbf{R}^2 \to \mathbf{R}^2$ defined by rotation by θ degrees. Is T linear? Check:

The pictures show $T(u) + T(v) = T(u + v)$ and $T(cu) = cT(u)$, so T is linear.

> Example: $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by rotation by θ degrees. What is the standard matrix?

Example: $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$
T\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}2x+3y-z\\y+z\end{pmatrix}.
$$

Is T linear? Check $T(u + v) = T(u) + T(v)$:

$$
T\left(\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}\right) = T\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \\ z_1 + z_2 \end{pmatrix}
$$

=
$$
\begin{pmatrix} 2(x_1 + x_2) + 3(y_1 + y_2) - (z_1 + z_2) \\ (y_1 + y_2) + (z_1 + z_2) \end{pmatrix}
$$

$$
T\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + T\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = \begin{pmatrix} 2x_1 + 3y_1 - z_1 \\ y_1 + z_1 \end{pmatrix} + \begin{pmatrix} 2x_2 + 3y_2 - z_2 \\ y_2 + z_2 \end{pmatrix}
$$

These are equal. $\sqrt{ }$

Note we're treating u and v as $unknown$ vectors: this has to work for all vectors u and $v!$

Example: $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$
T\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}2x+3y-z\\y+z\end{pmatrix}.
$$

Is T linear? Check $T(cu) = cT(u)$:

$$
T\left(c\begin{pmatrix}x\\y\\z\end{pmatrix}\right) = T\begin{pmatrix}cx\\cy\\cz\end{pmatrix} = \begin{pmatrix}2cx+3cy-cz\\cy+cz\end{pmatrix}
$$

$$
cT\begin{pmatrix}x\\y\\z\end{pmatrix} = c\begin{pmatrix}2x+3y-z\\y+z\end{pmatrix} = \begin{pmatrix}c(2x+3y-z)\\c(y+z)\end{pmatrix}
$$

These are equal. \blacktriangleright

Conclusion: T is linear.

Example: $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by

$$
T\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}2x+3y-z\\y+z\end{pmatrix}.
$$

We know it is linear, so it is a matrix transformation. What is its standard matrix A?

$$
T(e_1) = T\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}
$$

\n
$$
T(e_2) = T\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \end{pmatrix} \implies A = \begin{pmatrix} 2 & 3 & -1 \\ 0 & 1 & 1 \end{pmatrix}.
$$

\n
$$
T(e_3) = T\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}
$$

Subspaces

Definition

A subspace of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V. The series of the series o
- 2. If u and v are in V, then $u + v$ is also in V. "closed under addition"
- 3. If u is in V and c is in R, then cu is in V. "closed under \times scalars"

A subspace is a span, and a span is a subspace.

Important examples of subspaces:

- \blacktriangleright The span of any set of vectors.
- \blacktriangleright The column space of a matrix.
- \blacktriangleright The null space of a matrix.
- \blacktriangleright The solution set of a system of homogeneous equations.
- All of \mathbf{R}^n and the zero subspace $\{0\}$.

The point of a subspace is to talk about a span without figuring out which vectors it's the span of.

Example:
$$
A = \begin{pmatrix} 2 & 7 & -4 & 3 \\ 0 & 0 & 12 & 1 \\ 0 & 0 & 0 & -78 \end{pmatrix}
$$
 $V = \text{Nul } A$

There are 3 pivots, so rank $A = 3$.

By the rank theorem, dim Nul $A = 1$.

We know the null space is a line, but we never had to compute a spanning vector!