MATH 1553-A MIDTERM EXAMINATION 2

Name		Section	
------	--	---------	--

Please **read all instructions** carefully before beginning.

- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, calculator, etc.) allowed.
- Please show your work unless indicated otherwise.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

Hint: this is not worth full credit.

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \underbrace{32}_{2} \underbrace{92}_{2}$$

Scoring Page

Please do not write on this page.

1	2	3	4	5	Total

Problem 1.

In the following problems, *A* is an $m \times n$ matrix (*m* rows, *n* columns).

Circle **T** if the statement is always true, and circle **F** otherwise. You do not need to explain your answer.

Т	F	If <i>A</i> has a pivot in every column, then $NulA = \{0\}$.
Т	F	If $m > n$ and $T(x) = Ax$, then T is not one-to-one.
Т	F	A translate of a span is a subspace.
Т	F	There exists a 4×7 matrix <i>A</i> such that dim Nul <i>A</i> = 5.
Т	F	If $\{v_1, v_2, \dots, v_n\}$ is a basis for \mathbb{R}^4 , then $n = 4$.
	T T T	TF TF TF

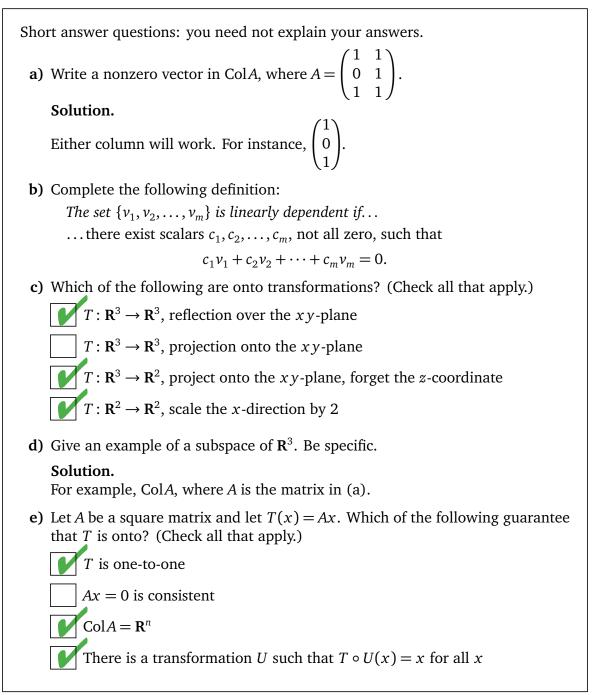
Solution.

- a) True.
- b) False. For instance,

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}.$$

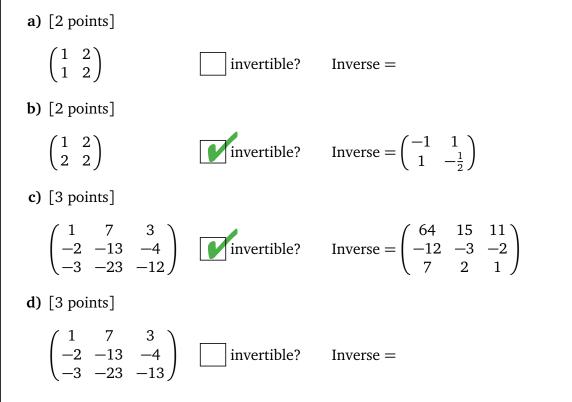
- c) False. A subspace must contain 0.
- d) True. For instance,

e) True. Any basis of \mathbf{R}^4 has 4 vectors.



Problem 3.

For each of the following matrices, decide if it is invertible. If it is invertible, find the inverse.



Solution.

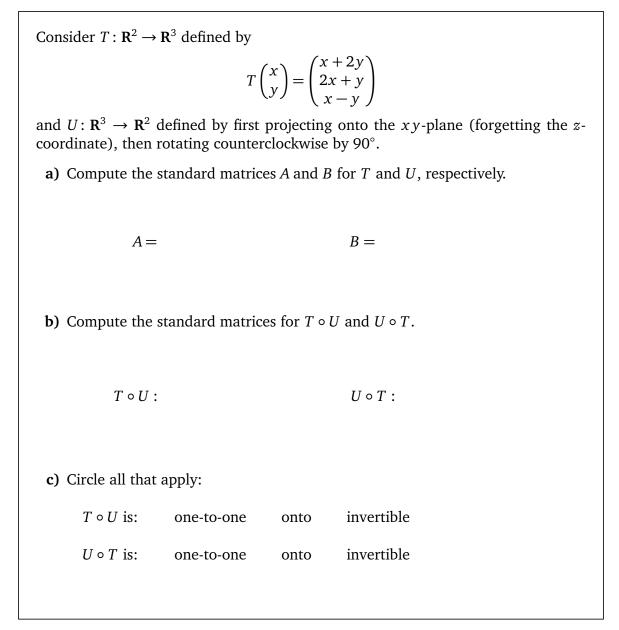
The first matrix is not invertible because its columns are collinear. The second is invertible because its determinant is $1 \cdot 2 - 2 \cdot 2 = -2$. For the third and fourth, we need to row reduce. Since we have to compute the inverses anyway, we augment by the identity:

$$\begin{pmatrix} 1 & 7 & 3 & | & 1 & 0 & 0 \\ -2 & -13 & -4 & | & 0 & 1 & 0 \\ -3 & -23 & -12 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{RREF}} \begin{pmatrix} 1 & 0 & 0 & | & 64 & 15 & 11 \\ 0 & 1 & 0 & | & -12 & -3 & -2 \\ 0 & 0 & 1 & | & 7 & 2 & 1 \end{pmatrix}.$$

This is invertible matrix.

$$\begin{pmatrix} 1 & 7 & 3 & | & 1 & 0 & 0 \\ -2 & -13 & -4 & | & 0 & 1 & 0 \\ -3 & -23 & -13 & | & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\text{REF}} \begin{pmatrix} 1 & 7 & 3 & | & 1 & 0 & 0 \\ 0 & 1 & 2 & | & 2 & 1 & 0 \\ 0 & 0 & 0 & | & 3 & 2 & 1 \end{pmatrix}$$

This is not an invertible matrix.



Solution.

a) We plug in the unit coordinate vectors to get

$$A = \begin{pmatrix} | & | \\ T(e_1) & T(e_2) \\ | & | \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix}$$

and

$$B = \begin{pmatrix} | & | & | \\ U(e_1) & U(e_2) & U(e_3) \\ | & | & | \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

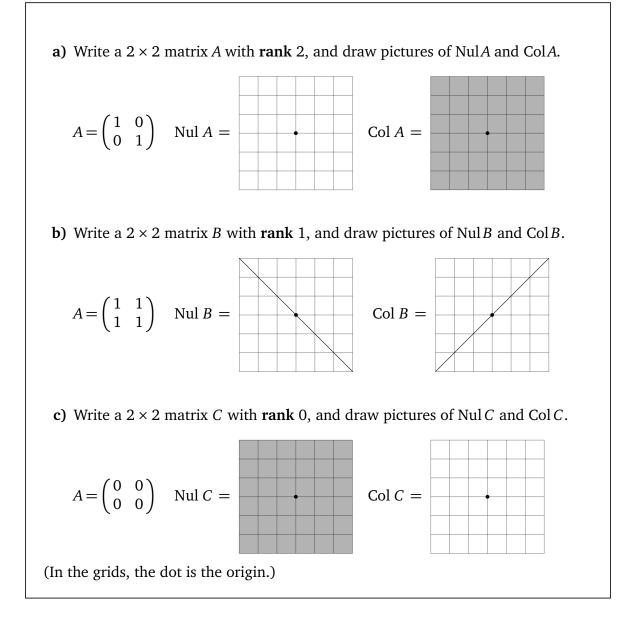
b) The standard matrix for $T \circ U$ is

$$AB = \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -2 & 0 \\ -1 & -1 & 0 \end{pmatrix}.$$

The standard matrix for $U \circ T$ is

$$BA = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} -2 & -1 \\ 1 & 2 \end{pmatrix}.$$

c) Looking at the matrices, we see that $T \circ U$ is not one-to-one, onto, or invertible, and that $U \circ T$ is one-to-one, onto, and invertible.



[Scratch work]