- \blacktriangleright WeBWorK 3.1, 3.2 are due Wednesday at 11:59pm.
- \blacktriangleright The quiz on Friday covers \S §3.1, 3.2.
- \triangleright My office is Skiles 244. Rabinoffice hours are Monday, 1-3pm and Tuesday, 9–11am.

Chapter 5

Eigenvalues and Eigenvectors

Section 5.1

Eigenvectors and Eigenvalues

A Biology Question **Motivation**

In a population of rabbits:

- 1. half of the newborn rabbits survive their first year;
- 2. of those, half survive their second year;
- 3. their maximum life span is three years;
- 4. rabbits have 0, 6, 8 baby rabbits in their three years, respectively.

If you know the population one year, what is the population the next year?

 f_n = first-year rabbits in year n s_n = second-year rabbits in year *n* t_n = third-year rabbits in year *n*

The rules say:

$$
\begin{pmatrix}\n0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0\n\end{pmatrix}\n\begin{pmatrix}\nf_n \\
s_n \\
t_n\n\end{pmatrix} =\n\begin{pmatrix}\nf_{n+1} \\
s_{n+1}\n\end{pmatrix}.
$$
\nLet $A = \begin{pmatrix}\n0 & 6 & 8 \\
\frac{1}{2} & 0 & 0 \\
0 & \frac{1}{2} & 0\n\end{pmatrix}$ and $v_n = \begin{pmatrix}\nf_n \\
s_n \\
t_n\n\end{pmatrix}$. Then $\overline{A v_n = v_{n+1}}$.
\n $\left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\right)$

A Biology Question **Continued**

If you know v_0 , what is v_{10} ?

$$
v_{10}=Av_9=AAv_8=\cdots=A^{10}v_0.
$$

This makes it easy to compute examples by computer:

What do you notice about these numbers?

- 1. Eventually, each segment of the population doubles every year: $Av_n = v_{n+1} = 2v_n$.
- 2. The ratios get close to $(16:4:1):$

$$
v_n = (scalar) \cdot \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}.
$$

is an eigenvector!

Note: Eigenvectors are by definition nonzero. Eigenvalues may be equal to zero.

This is the most important definition in the course.

Verifying Eigenvectors

Example

$$
A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad v = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix}
$$

Multiply:

$$
Av = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 32 \\ 8 \\ 2 \end{pmatrix} = 2v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda = 2$.

Example

$$
A = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \qquad v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

Multiply:

$$
Av = \begin{pmatrix} 2 & 2 \\ -4 & 8 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \end{pmatrix} = 4v
$$

Hence v is an eigenvector of A, with eigenvalue $\lambda = 4$.

Poll

Which of the vectors

Poll

A.
$$
\begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$
 B. $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ C. $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ D. $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ E. $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

are eigenvectors of the matrix $\begin{pmatrix} 1 & 1 \ 1 & 1 \end{pmatrix}$?

What are the eigenvalues?

eigenvector with eigenvalue 2

eigenvector with eigenvalue 0

eigenvector with eigenvalue 0

not an eigenvector

is never an eigenvector

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = 0 \begin{pmatrix} -1 \\ 1 \end{pmatrix}
$$

$$
\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix}
$$

$$
\begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

Verifying Eigenvalues

Question: Is
$$
\lambda = 3
$$
 an eigenvalue of $A = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix}$?

In other words, does $Av = 3v$ have a nontrivial solution? ... does $Av - 3v = 0$ have a nontrivial solution? ... does $(A - 3I)v = 0$ have a nontrivial solution?

We know how to answer that! Row reduction!

$$
A - 3I = \begin{pmatrix} 2 & -4 \\ -1 & -1 \end{pmatrix} - 3\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix}
$$

Row reduce:

$$
\begin{pmatrix} -1 & -4 \\ -1 & -4 \end{pmatrix} \downarrow \downarrow \downarrow \begin{pmatrix} 1 & 4 \\ 0 & 0 \end{pmatrix}
$$

Parametric form: $x = -4y$; parametric vector form: $\begin{pmatrix} x \\ y \end{pmatrix}$ y $= y \begin{pmatrix} -4 \\ 1 \end{pmatrix}$ 1 .

Does there exist an eigenvector with eigenvalue $\lambda = 3$? Yes! Any nonzero multiple of $\begin{pmatrix} -4 \\ 1 \end{pmatrix}$ 1 . Check: $(2 -4)$ -1 -1 −4 1 $=\binom{-12}{2}$ 3 $= 3 \binom{-4}{1}$ 1). \mathbf{v}

Eigenspaces

Definition

Let A be an $n \times n$ matrix and let λ be an eigenvalue of A. The λ -eigenspace of A is the set of all eigenvectors of A with eigenvalue λ , plus the zero vector:

$$
\lambda
$$
-eigenspace = { v in \mathbb{R}^n | $Av = \lambda v$ }
= { v in \mathbb{R}^n | $(A - \lambda I)v = 0$ }
= Nu($(A - \lambda I)$).

Since the λ -eigenspace is a null space, it is a subspace of R^n .

How do you find a basis for the λ -eigenspace? Parametric vector form!

Eigenspaces Example

Find a basis for the 2-eigenspace of $A =$ $\sqrt{ }$ $\overline{1}$ 7/2 0 3 $-3/2$ 2 -3 $-3/2$ 0 -1 \setminus $\vert \cdot$ λ $A - 2I =$ $\sqrt{ }$ $\overline{1}$ $\frac{3}{2}$ 0 3 $-\frac{3}{2}$ 0 -3 $-\frac{3}{2}$ 0 -3 2 \setminus $\overline{1}$ row reduce $\sqrt{ }$ \mathcal{L} 1 0 2 0 0 0 0 0 0 \setminus $\overline{1}$ parametric form $x = -2z$ parametric vector form \mathcal{L} x y z \. $= y$ $\sqrt{ }$ $\overline{1}$ 0 1 0 \setminus $+ z$ $\sqrt{ }$ \mathcal{L} −2 0 1 A. $\overline{1}$ basis \int J \mathcal{L} $\sqrt{ }$ $\overline{1}$ 0 1 0 \setminus \vert , $\sqrt{ }$ \mathcal{L} −2 0 1 A. $\overline{1}$ \mathcal{L} \mathcal{L} \int

Eigenspaces Example

Find a basis for the $\frac{1}{2}$ -eigenspace of

$$
A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.
$$

\n
$$
A - \frac{1}{2}I = \begin{pmatrix} 3 & 0 & 3 \\ -\frac{3}{2} & \frac{3}{2} & -3 \\ -\frac{3}{2} & 0 & -\frac{3}{2} \end{pmatrix}
$$

\n
$$
\begin{array}{c}\n\text{row reduce} \\
\text{parametric} \\
\text{commutance} \\
\text{commut
$$

Eigenvectors, geometrically

An eigenvector of a matrix A is a nonzero vector v such that:

- \triangleright Av is a multiple of v, which means
- \triangleright Av is collinear with v, which means
- \triangleright Av and v are on the same line.

 v is an eigenvector

 w is not an eigenvector

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

v is an eigenvector with eigenvalue -1 .

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

 w is an eigenvector with eigenvalue 1.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

 u is not an eigenvector.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

Neither is z.

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The 1-eigenspace is L (all the vectors x where $Ax = x$).

Question: What are the eigenvalues and eigenspaces of A? No computations!

Does anyone see any eigenvectors (vectors that don't move off their line)?

The (-1) -eigenspace is the line $y = x$ (all the vectors x where $Ax = -x$).

$$
A = \begin{pmatrix} 7/2 & 0 & 3 \\ -3/2 & 2 & -3 \\ -3/2 & 0 & -1 \end{pmatrix}.
$$

Before we computed bases for the 2-eigenspace and the $1/2$ -eigenspace:

2-eigenspace:
$$
\left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} \right\}
$$
 $\frac{1}{2}$ -eigenspace: $\left\{ \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix} \right\}$

Hence the 2-eigenspace is a plane and the $1/2$ -eigenspace is a line.

Let A be an $n \times n$ matrix and let λ be a number.

- 1. λ is an eigenvalue of A if and only if $(A \lambda I)x = 0$ has a nontrivial solution, if and only if Nul($A - \lambda I$) \neq {0}.
- 2. In this case, finding a basis for the λ -eigenspace of A means finding a basis for Nul($A - \lambda I$) as usual, i.e. by finding the parametric vector form for the general solution to $(A - \lambda I)x = 0$.
- 3. The eigenvectors with eigenvalue λ are the nonzero elements of Nul($A - \lambda I$), i.e. the nontrivial solutions to $(A - \lambda I)x = 0.$

The Eigenvalues of a Triangular Matrix are the Diagonal Entries

We've seen that finding eigenvectors for a given eigenvalue is a row reduction problem.

Finding all of the eigenvalues of a matrix is not a row reduction problem! We'll see how to do it in general next time. For now:

Fact: The eigenvalues of a triangular matrix are the diagonal entries.

Why? Nul($A - \lambda I$) \neq {0} if and only if $A - \lambda I$ is not invertible, if and only if $det(A - \lambda I) = 0.$

$$
\begin{pmatrix} 3 & 4 & 1 & 2 \ 0 & -1 & -2 & 7 \ 0 & 0 & 8 & 12 \ 0 & 0 & 0 & -3 \end{pmatrix} - \lambda I_4 = \begin{pmatrix} 3-\lambda & 4 & 1 & 2 \ 0 & -1-\lambda & -2 & 7 \ 0 & 0 & 8-\lambda & 12 \ 0 & 0 & 0 & -3-\lambda \end{pmatrix}.
$$

The determinant is $(3 - \lambda)(-1 - \lambda)(8 - \lambda)(-3 - \lambda)$, which is zero exactly when $\lambda = 3, -1, 8$, or -3 .

A Matrix is Invertible if and only if Zero is not an Eigenvalue

Fact: A is invertible if and only if 0 is not an eigenvalue of A.

Why?

0 is an eigenvalue of $A \iff Ax = 0x$ has a nontrivial solution \Leftrightarrow $Ax = 0$ has a nontrivial solution \Rightarrow A is not invertible. invertible matrix theorem

Eigenvectors with Distinct Eigenvalues are Linearly Independent

Fact: If v_1, v_2, \ldots, v_k are eigenvectors of A with *distinct* eigenvalues $\lambda_1, \ldots, \lambda_k$, then $\{v_1, v_2, \ldots, v_k\}$ is linearly independent.

Why? If $k = 2$, this says v_2 can't lie on the line through v_1 .

But the line through v_1 is contained in the λ_1 -eigenspace, and v_2 does not have eigenvalue λ_1 .

In general: see Lay, Theorem 2 in §5.1 (or work it out for yourself; it's not too hard).

Consequence: An $n \times n$ matrix has at most *n* distinct eigenvalues.

Difference Equations

Preview

Let A be an $n \times n$ matrix. Suppose we want to solve $Av_n = v_{n+1}$ for all n. In other words, we want vectors v_0, v_1, v_2, \ldots , such that

$$
Av_0 = v_1 \qquad Av_1 = v_2 \qquad Av_2 = v_3 \qquad \ldots
$$

We saw before that $v_n = A^n v_0$. But it is inefficient to multiply by A each time. If v_0 is an *eigenvector* with eigenvalue λ , then

$$
v_1 = Av_0 = \lambda v_0 \qquad v_2 = Av_1 = \lambda v_1 = \lambda^2 v_0 \qquad v_3 = Av_2 = \lambda v_2 = \lambda^3 v_0.
$$

In general, $v_n = \lambda^n v_0$. This is *much easier* to compute.

Example

$$
A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \qquad v_0 = \begin{pmatrix} 16 \\ 4 \\ 1 \end{pmatrix} \qquad Av_0 = 2v_0.
$$

So if you start with 16 baby rabbits, 4 first-year rabbits, and 1 second-year rabbit, then the population will exactly double every year. In year n , you will have $2^n \cdot 16$ baby rabbits, $2^n \cdot 4$ first-year rabbits, and 2^n second-year rabbits.