- \blacktriangleright WeBWorK 3.1, 3.2 are due today at 11:59pm.
- \blacktriangleright The quiz on Friday covers §§3.1, 3.2.
- \triangleright My office is Skiles 244. Rabinoffice hours are Monday, 1-3pm and Tuesday, 9–11am.

Section 5.2

The Characteristic Equation

The Invertible Matrix Theorem Addenda

We have a couple of new ways of saying "A is invertible" now:

The Invertible Matrix Theorem

Let A be a square $n \times n$ matrix, and let $T: \mathbf{R}^n \to \mathbf{R}^n$ be the linear transformation $T(x) = Ax$. The following statements are equivalent.

- 1. A is invertible.
	- 2. T is invertible.
	- 3. A is row equivalent to I_n .
	- 4. A has n pivots.
	- 5. $Ax = 0$ has only the trivial solution.
	- 6. The columns of A are linearly independent.
	- 7. T is one-to-one.
	- 8. $Ax = b$ is consistent for all b in \mathbb{R}^n .
	- 9. The columns of A span \mathbb{R}^n .
	- 10. T is onto.
- 11. A has a left inverse (there exists B such that $BA = I_n$).
- 12. A has a right inverse (there exists B such that $AB = I_n$).
- 13. A^T is invertible.
- 14. The columns of A form a basis for \mathbb{R}^n .
- 15. Col $A = \mathbb{R}^n$.
- 16. dim Col $A = n$.
- 17. rank $A = n$.
- 18. Nul $A = \{0\}$.
- 19. dim Nul $A = 0$.
- 19. The determinant of \overline{A} is *not* equal to zero.
- 20. The number 0 is not an eigenvalue of A.

The Characteristic Polynomial

Let A be a square matrix.

 λ is an eigenvalue of $A \iff Ax = \lambda x$ has a nontrivial solution \Leftrightarrow $(A - \lambda I)x = 0$ has a nontrivial solution \iff A – λ I is not invertible \iff det($A - \lambda I$) = 0.

This gives us a way to compute the eigenvalues of A.

Definition

Let A be a square matrix. The characteristic polynomial of A is

$$
f(\lambda) = \det(A - \lambda I).
$$

The **characteristic equation** of A is the equation

$$
f(\lambda)=\det(A-\lambda I)=0.
$$

The eigenvalues of A are the roots of the characteristic polynomial $f(\lambda) = \det(A - \lambda I)$. Important

The Characteristic Polynomial **Example**

Question: What are the eigenvalues of

$$
A = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}
$$
?

The Characteristic Polynomial **Example**

Question: What is the characteristic polynomial of

$$
A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
$$
?

What do you notice about $f(\lambda)$?

- **If** The constant term is det(A), which is zero if and only if $\lambda = 0$ is a root.
- ► The linear term $-(a + d)$ is the negative of the sum of the diagonal entries of A.

Definition

The trace of a square matrix A is $Tr(A) = \text{sum of the diagonal entries of } A$.

The characteristic polynomial of a 2×2 matrix A is $f(\lambda) = \lambda^2 - \text{Tr}(A)\,\lambda + \det(A).$ **Shortcut**

The Characteristic Polynomial

Example

Question: What are the eigenvalues of the rabbit population matrix

$$
A = \begin{pmatrix} 0 & 6 & 8 \\ \frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \end{pmatrix}
$$
?

Algebraic Multiplicity

Definition

The (algebraic) multiplicity of an eigenvalue λ is its multiplicity as a root of the characteristic polynomial.

This is not a very interesting notion yet. It will become interesting when we also define geometric multiplicity later.

Example

In the rabbit population matrix, $f(\lambda) = -(\lambda-2)(\lambda+1)^2$, so the algebraic multiplicity of the eigenvalue 2 is 1, and the algebraic multiplicity of the eigenvalue -1 is 2.

Example

In the matrix $\begin{pmatrix} 5 & 2 \ 2 & 1 \end{pmatrix}$, $f(\lambda) = (\lambda - (3 - 2\sqrt{2}))(\lambda - (3 + 2\sqrt{2}))$, so the algebraic multiplicity of $3 + 2\sqrt{2}$ is 1, and the algebraic multiplicity of $3 - 2\sqrt{2}$ is 1.

Fact: If A is an $n \times n$ matrix, the characteristic polynomial

 $f(\lambda) = det(A - \lambda I)$

turns out to be a polynomial of degree n , and its roots are the eigenvalues of A :

$$
f(\lambda)=(-1)^n\lambda^n+a_{n-1}\lambda^{n-1}+a_{n-2}\lambda^{n-2}+\cdots+a_1\lambda+a_0.
$$

The B-basis Review

Recall: If $\{v_1, v_2, \ldots, v_m\}$ is a basis for a subspace V and x is in V, then the B-coordinates of x are the (unique) coefficients c_1, c_2, \ldots, c_m such that

 $x = c_1v_1 + c_2v_2 + \cdots + c_mv_m.$

In this case, the B -coordinate vector of x is

$$
[x]_{\mathcal{B}} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_m \end{pmatrix}.
$$

Example: The vectors

$$
v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}
$$

form a basis for R^2 because they are not collinear. $\qquad \qquad \qquad [\text{interactive}]$

Coordinate Systems on Rⁿ

Recall: A set of n vectors $\{v_1, v_2, \ldots, v_n\}$ form a basis for \mathbb{R}^n if and only if the matrix C with columns v_1, v_2, \ldots, v_n is invertible.

Translation: Let β be the basis of columns of C. Multiplying by C changes from the ${\mathcal B}$ -coordinates to the usual coordinates, and multiplying by ${\mathcal C}^{-1}$ changes from the usual coordinates to the B -coordinates:

$$
[x]_{\mathcal{B}} = C^{-1}x \qquad x = C[x]_{\mathcal{B}}.
$$

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix C such that

$$
A = CBC^{-1}.
$$

What does this mean? This gives you a different way of thinking about multiplication by A. Let β be the basis of columns of C.

To compute Ax , you:

- 1. multiply x by C^{-1} to change to the B-coordinates: $[x]_{\mathcal{B}} = C^{-1}x$
- 2. multiply this by $B\colon B[x]_\mathcal{B} = BC^{-1}x$
- 3. multiply this by C to change to usual coordinates: $Ax = CBC^{-1}x = CB[x]_B$.

Similarity

Definition

Two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix C such that

$$
A = CBC^{-1}.
$$

What does this mean? This gives you a different way of thinking about multiplication by A. Let β be the basis of columns of C.

If $A = CBC^{-1}$, then A and B do the same thing, but B operates on the B -coordinates, where B is the basis of columns of C.

$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}.
$$

It scales the x-direction by 2 and the y-direction by -1 .

$$
\mathcal{B}=\left\{\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\}=\left\{\begin{matrix}v_1,\ v_2\end{matrix}\right\}\qquad\text{(the columns of }\mathcal{C}\text{)}.
$$

$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}.
$$

It scales the x-direction by 2 and the y-direction by -1 .

$$
\mathcal{B}=\left\{\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\}=\left\{\begin{matrix}v_1,\ v_2\end{matrix}\right\}\qquad\text{(the columns of }\mathcal{C}\text{)}.
$$

$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}.
$$

It scales the x-direction by 2 and the y-direction by -1 .

$$
\mathcal{B}=\left\{\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\}=\left\{\begin{matrix}v_1,\ v_2\end{matrix}\right\}\qquad\text{(the columns of }\mathcal{C}\text{)}.
$$

$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad A = CBC^{-1}.
$$

It scales the x-direction by 2 and the y-direction by -1 .

$$
\mathcal{B}=\left\{\begin{pmatrix}2\\1\end{pmatrix},\begin{pmatrix}1\\1\end{pmatrix}\right\}=\left\{\begin{matrix}v_1,\ v_2\end{matrix}\right\}\qquad\text{(the columns of }\mathcal{C}\text{)}.
$$

Similarity Example

What does A do geometrically?

- \triangleright B scales the e₁-direction by 2 and the e₂-direction by -1.
- \triangleright A scales the v₁-direction by 2 and the v₂-direction by −1.

Since B is simpler than A, this makes it easier to understand A. Note the relationship between the eigenvalues/eigenvectors of A and B. **Similarity** Example (3×3)

$$
A = \begin{pmatrix} -3 & -5 & -3 \\ 2 & 4 & 3 \\ -3 & -5 & -2 \end{pmatrix} \quad B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad C = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}
$$

$$
\implies A = CBC^{-1}.
$$

What do A and B do geometrically?

- \triangleright B scales the e_1 -direction by 2, the e_2 -direction by -1 , and fixes e_3 .
- A scales the v₁-direction by 2, the v₂-direction by -1 , and fixes v₃.

Here v_1 , v_2 , v_3 are the columns of C.

[\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/similarity.html?C=-1,1,0:1,-1,1:-1,0,1&B=2,0,0:0,-1,0:0,0,1)

Similar Matrices Have the Same Characteristic Polynomial

Fact: If A and B are similar, then they have the same characteristic polynomial. Why? Suppose $A = CBC^{-1}$.

> Consequence: similar matrices have the same eigenvalues! (But different eigenvectors in general.)

Summary

We did two different things today.

First we talked about characteristic polynomials:

- \triangleright We learned to find the eigenvalues of a matrix by computing the roots of the characteristic polynomial $p(\lambda) = \det(A - \lambda I)$.
- For a 2×2 matrix A, the characteristic polynomial is just

$$
p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A).
$$

 \triangleright The algebraic multiplicity of an eigenvalue is its multiplicity as a root of the characteristic polynomial.

Then we talked about similar matrices:

- \triangleright Two square matrices A, B of the same size are similar if there is an invertible matrix C such that $A = CBC^{-1}$.
- Geometrically, similar matrices A and B do the same thing, except B operates on the coordinate system β defined by the columns of C:

$$
B[x]_{\mathcal{B}}=[Ax]_{\mathcal{B}}.
$$

In This is useful when we can find a similar matrix B which is *simpler* than A (e.g., a diagonal matrix).