- > The third midterm is on Friday, November 17.
 - That is one week from this Friday.
 - ▶ The exam covers §§3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
- ▶ WeBWorK 5.1, 5.2 are due Wednesday at 11:59pm.
- ▶ The quiz on Friday covers §§5.1, 5.2.
- My office is Skiles 244. Rabinoffice hours are Monday, 1–3pm and Tuesday, 9–11am.

Section 5.3

Diagonalization

Many real-word linear algebra problems have the form:

 $v_1 = Av_0, \quad v_2 = Av_1 = A^2v_0, \quad v_3 = Av_2 = A^3v_0, \quad \dots \quad v_n = Av_{n-1} = A^nv_0.$

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

- Taking powers of diagonal matrices is easy!
- Taking powers of diagonalizable matrices is still easy!
- Diagonalizing a matrix is an eigenvalue problem.

Powers of Diagonal Matrices

If D is diagonal, then D^n is also diagonal; its diagonal entries are the *n*th powers of the diagonal entries of D:

Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let
$$A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}$$
. Compute A^n .

In $\S5.2$ lecture we saw that A is similar to a diagonal matrix:

$$A = PDP^{-1}$$
 where $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}$.

Then

$$A^{2} =$$

$$A^{3} =$$

$$\vdots$$

$$A^{n} =$$

Therefore

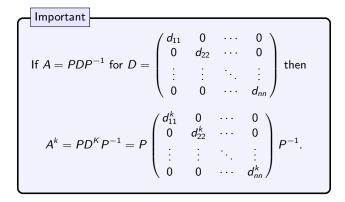
 $A^n =$

Diagonalizable Matrices

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

 $A = PDP^{-1}$ for D diagonal.



So diagonalizable matrices are easy to raise to any power.

Diagonalization

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$P = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary - a theorem that follows easily from another theorem

An $n \times n$ matrix with *n* distinct eigenvalues is diagonalizable.

The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have n distinct eigenvalues though.

Question: What does the Diagonalization Theorem say about the matrix

$$A=egin{pmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 3 \end{pmatrix}?$$

A diagonal matrix D is diagonalizable! It is similar to itself:

$$D=I_nDI_n^{-1}.$$

Diagonalization Example

Problem: Diagonalize
$$A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}$$
.

Diagonalization Another example

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Diagonalization Another example, continued

Problem: Diagonalize
$$A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}$$
.

Note: In this case, there are three linearly independent eigenvectors, but only two distinct eigenvalues.

Diagonalization A non-diagonalizable matrix

Problem: Show that
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
 is not diagonalizable.

Conclusion: A has only one linearly independent eigenvector, so by the "only if" part of the diagonalization theorem, A is not diagonalizable.

Poll

Diagonalization Procedure

How to diagonalize a matrix A:

- 1. Find the eigenvalues of A using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ -eigenspace.
- 3. If there are fewer than *n* total vectors in the union of all of the eigenspace bases \mathcal{B}_{λ} , then the matrix is not diagonalizable.
- Otherwise, the *n* vectors v₁, v₂,..., v_n in your eigenspace bases are linearly independent, and A = PDP⁻¹ for

$$P = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \text{ and } D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},$$

where λ_i is the eigenvalue for v_i .

Why is the Diagonalization Theorem true?

Definition

Let λ be an eigenvalue of a square matrix A. The **geometric multiplicity** of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix ${\it A}.$ Then

 $1 \leq$ (the geometric multiplicity of λ) \leq (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
- 3. The sum of the algebraic multiplicities of the eigenvalues of A equals n, and the geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

Non-Distinct Eigenvalues

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}$$
 has eigenvalues -1 and 2, so it is diagonalizable.

Example

The matrix
$$A=egin{pmatrix} 4&-3&0\2&-1&0\1&-1&1 \end{pmatrix}$$
 has characteristic polynomial $f(\lambda)=-(\lambda-1)^2(\lambda-2).$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3. We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1. Hence the geometric multiplicities add up to 3, so A is diagonalizable.

Non-Distinct Eigenvalues

Another example

Example

The matrix $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace has dimension 1).

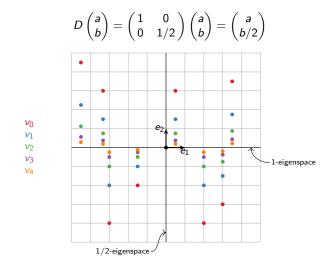
Since the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is *not* diagonalizable.

Let
$$D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}$$
.

Fix a vector v_0 , and let $v_1 = Dv_0$, $v_2 = Dv_1$, etc., so $v_n = D^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Picture



So all vectors get "sucked into the x-axis," which is the 1-eigenspace.

More complicated example

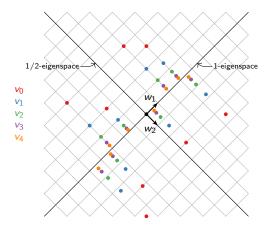
Let
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
.

Fix a vector v_0 , and let $v_1 = Av_0$, $v_2 = Av_1$, etc., so $v_n = A^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Picture of the more complicated example

Recall: $A^n = PD^nP^{-1}$ acts on the \mathcal{B} -coordinates in the same way that D^n acts on the usual coordinates, where $\mathcal{B} = \{w_1, w_2\}$.



So all vectors get "sucked into the 1-eigenspace."

[interactive]

Remark

The matrix
$$A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}$$
 is called a **stochastic matrix**.

Summary

- A matrix A is **diagonalizable** if it is similar to a diagonal matrix D: $A = PDP^{-1}$.
- It is easy to take powers of diagonalizable matrices: $A^r = PD^rP^{-1}$.
- An n × n matrix is diagonalizable if and only if it has n linearly independent eigenvectors v₁, v₂, ..., vn, in which case A = PDP⁻¹ for

$$P = \begin{pmatrix} | & | & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}.$$

- ▶ If A has n distinct eigenvalues, then it is diagonalizable.
- The **geometric multiplicity** of an eigenvalue λ is the dimension of the λ -eigenspace.
- $1 \leq (\text{geometric multiplicity}) \leq (\text{algebraic multiplicity}).$
- An n × n matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.