- \blacktriangleright The third midterm is on Friday, November 17.
	- \blacktriangleright That is one week from this Friday.
	- ▶ The exam covers \S §3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
- \blacktriangleright WeBWorK 5.1, 5.2 are due Wednesday at 11:59pm.
- \blacktriangleright The quiz on Friday covers §§5.1, 5.2.
- \triangleright My office is Skiles 244. Rabinoffice hours are Monday, 1-3pm and Tuesday, 9–11am.

Section 5.3

Diagonalization

Many real-word linear algebra problems have the form:

 $v_1 = Av_0$, $v_2 = Av_1 = A^2 v_0$, $v_3 = Av_2 = A^3 v_0$, ... $v_n = Av_{n-1} = A^n v_0$.

This is called a difference equation.

Our toy example about rabbit populations had this form.

The question is, what happens to v_n as $n \to \infty$?

- \triangleright Taking powers of diagonal matrices is easy!
- \blacktriangleright Taking powers of *diagonalizable* matrices is still easy!
- \triangleright Diagonalizing a matrix is an eigenvalue problem.

Powers of Diagonal Matrices

If D is diagonal, then D^n is also diagonal; its diagonal entries are the nth powers of the diagonal entries of D:

$$
D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}, \quad D^2 = \begin{pmatrix} 4 & 0 \\ 0 & 1 \end{pmatrix}, \quad D^3 = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}, \quad \dots \quad D^n = \begin{pmatrix} 2^n & 0 \\ 0 & (-1)^n \end{pmatrix}.
$$

$$
D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3} \end{pmatrix}, \quad D^2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{9} \end{pmatrix}, \quad D^3 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & \frac{1}{8} & 0 \\ 0 & 0 & \frac{1}{27} \end{pmatrix},
$$

$$
\dots \quad D^n = \begin{pmatrix} (-1)^n & 0 & 0 \\ 0 & \frac{1}{2^n} & 0 \\ 0 & 0 & \frac{1}{3^n} \end{pmatrix}
$$

Powers of Matrices that are Similar to Diagonal Ones

What if A is not diagonal?

Example

Let
$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}
$$
. Compute A^n .

In $\S5.2$ lecture we saw that A is similar to a diagonal matrix:

$$
A = PDP^{-1} \quad \text{where} \quad P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 2 & 0 \\ 0 & -1 \end{pmatrix}.
$$

Then

$$
A2 = (PDP-1)(PDP-1) = PD(P-1P)DP-1 = PDIDP-1 = PD2P-1
$$

$$
A3 = (PDP-1)(PD2P-1) = PD(P-1P)D2P-1 = PDID2P-1 = PD3P-1
$$

$$
A^n = P D^n P^{-1}
$$

. . .

Closed formula in terms of n: easy to compute

Therefore

$$
A^n = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & (-1)^n \end{pmatrix} \frac{1}{-2} \begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2^n - (-1)^{n+1} & 2^n - (-1)^n \\ 2^n - (-1)^n & 2^n - (-1)^{n+1} \end{pmatrix}.
$$

Definition

An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix:

 $A = PDP^{-1}$ for D diagonal.

So diagonalizable matrices are easy to raise to any power.

The Diagonalization Theorem

An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

In this case, $A = PDP^{-1}$ for

$$
P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix},
$$

where v_1, v_2, \ldots, v_n are linearly independent eigenvectors, and $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvalues (in the same order).

Corollary \leftarrow a theorem that follows easily from another theorem

An $n \times n$ matrix with *n* distinct eigenvalues is diagonalizable.

The Corollary is true because eigenvectors with distinct eigenvalues are always linearly independent. We will see later that a diagonalizable matrix need not have *n* distinct eigenvalues though.

Question: What does the Diagonalization Theorem say about the matrix

$$
A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}
$$
?

This is a triangular matrix, so the eigenvalues are the diagonal entries 1, 2, 3.

A diagonal matrix just scales the coordinates by the diagonal entries, so we can take our eigenvectors to be the unit coordinate vectors e_1, e_2, e_3 . Hence the Diagonalization Theorem says

$$
\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

It doesn't give us anything new because the matrix was already diagonal!

A diagonal matrix D is diagonalizable! It is similar to itself:

$$
D=I_nDI_n^{-1}.
$$

Diagonalization Example

Problem: Diagonalize
$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}
$$
.

The characteristic polynomial is

$$
f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - \lambda - 2 = (\lambda + 1)(\lambda - 2).
$$

Therefore the eigenvalues are -1 and 2. Let's compute some eigenvectors:

$$
(A+1I)x = 0 \iff \begin{pmatrix} 3/2 & 3/2 \\ 3/2 & 3/2 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x = 0
$$

The parametric form is $x = -y$, so $v_1 = \binom{-1}{1}$ is an eigenvector with eigenvalue -1 .

$$
(A-2I)x = 0 \iff \begin{pmatrix} -3/2 & 3/2 \\ 3/2 & -3/2 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix} x = 0
$$

The parametric form is $x=y$, so $v_2={1 \choose 1}$ is an eigenvector with eigenvalue 2. The eigenvectors v_1, v_2 are linearly independent, so the Diagonalization Theorem says

$$
A = PDP^{-1} \quad \text{for} \quad P = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix}.
$$

Diagonalization Another example

Problem: Diagonalize
$$
A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
$$
.

The characteristic polynomial is

$$
f(\lambda) = \det(A - \lambda I) = -\lambda^3 + 4\lambda^2 - 5\lambda + 2 = -(\lambda - 1)^2(\lambda - 2).
$$

Therefore the eigenvalues are 1 and 2, with respective multiplicities 2 and 1. Let's compute the 1-eigenspace:

$$
(A - I)x = 0 \iff \begin{pmatrix} 3 & -3 & 0 \\ 2 & -2 & 0 \\ 1 & -1 & 0 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} x = 0
$$

The parametric vector form is

$$
\begin{array}{c}\nx = y \\
y = y \\
z = z\n\end{array}\n\implies\n\begin{pmatrix}\nx \\
y \\
z\n\end{pmatrix} = y \begin{pmatrix}\n1 \\
1 \\
0\n\end{pmatrix} + z \begin{pmatrix}\n0 \\
0 \\
1\n\end{pmatrix}
$$

Hence a basis for the 1-eigenspace is

$$
\mathcal{B}_1 = \left\{ v_1, v_2 \right\} \quad \text{where} \quad v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.
$$

Problem: Diagonalize
$$
A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
$$
.

Now let's compute the 2-eigenspace:

$$
(A-2I)x = 0 \iff \begin{pmatrix} 2 & -3 & 0 \\ 2 & -3 & 0 \\ 1 & -1 & -1 \end{pmatrix} x = 0 \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix} x = 0
$$

The parametric form is $x = 3z$, $y = 2z$, so an eigenvector with eigenvalue 2 is

$$
v_3=\begin{pmatrix}3\\2\\1\end{pmatrix}.
$$

The eigenvectors v_1, v_2, v_3 are linearly independent: v_1, v_2 form a basis for the 1-eigenspace, and v_3 is not contained in the 1-eigenspace. Therefore the Diagonalization Theorem says

$$
A = PDP^{-1} \quad \text{for} \quad P = \begin{pmatrix} 1 & 0 & 3 \\ 1 & 0 & 2 \\ 0 & 1 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.
$$

Note: In this case, there are three linearly independent eigenvectors, but only two distinct eigenvalues.

Problem: Show that
$$
A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}
$$
 is not diagonalizable.

This is an upper-triangular matrix, so the only eigenvalue is 1. Let's compute the 1-eigenspace:

$$
(A - I)x = 0 \iff \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} x = 0.
$$

This is row reduced, but has only one free variable x ; a basis for the 1-eigenspace is $\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$. So *all eigenvectors* of A are multiples of $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

Conclusion: A has only one linearly independent eigenvector, so by the "only if" part of the diagonalization theorem, A is not diagonalizable.

Which of the following matrices are diagonalizable, and why? A. $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$ B. $\begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ Poll

Matrix A is not diagonalizable: its only eigenvalue is 1, and its 1-eigenspace is spanned by $\binom{1}{0}$.

Similarly, matrix C is not diagonalizable.

Matrix B is diagonalizable because it is a 2×2 matrix with distinct eigenvalues.

Matrix D is already diagonal!

Diagonalization Procedure

How to diagonalize a matrix A:

- 1. Find the eigenvalues of A using the characteristic polynomial.
- 2. For each eigenvalue λ of A, compute a basis \mathcal{B}_{λ} for the λ -eigenspace.
- 3. If there are fewer than n total vectors in the union of all of the eigenspace bases B_{λ} , then the matrix is not diagonalizable.
- 4. Otherwise, the *n* vectors v_1, v_2, \ldots, v_n in your eigenspace bases are linearly $independent$, and $A = PDP^{-1}$ for

$$
P=\left(\begin{array}{cccc} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{array}\right) \quad \text{and} \quad D=\left(\begin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{array}\right),
$$

where λ_i is the eigenvalue for v_i .

Diagonalization Proof

Why is the Diagonalization Theorem true?

A diagonalizable implies A has n linearly independent eigenvectors: Suppose $\mathcal{A}=PDP^{-1}$, where D is diagonal with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let v_1, v_2, \ldots, v_n be the columns of P. They are linearly independent because P is invertible. So $Pe_i = v_i$, hence $P^{-1}v_i = e_i$.

$$
Av_i = PDP^{-1}v_i = PDe_i = P(\lambda_i e_i) = \lambda_i Pe_i = \lambda_i v_i.
$$

Hence v_i is an eigenvector of A with eigenvalue λ_i . So the columns of P form n linearly independent eigenvectors of A , and the diagonal entries of D are the eigenvalues.

A has n linearly independent eigenvectors implies A is diagonalizable: Suppose A has n linearly independent eigenvectors v_1, v_2, \ldots, v_n , with eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$. Let P be the invertible matrix with columns v_1, v_2, \ldots, v_n . Let $D = P^{-1}AP$.

$$
De_i = P^{-1}APe_i = P^{-1}Av_i = P^{-1}(\lambda_i v_i) = \lambda_i P^{-1}v_i = \lambda_i e_i.
$$

Hence D is diagonal, with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$. Solving $D = P^{-1}AP$ for A gives $A = PDP^{-1}$.

Non-Distinct Eigenvalues

Definition

Let λ be an eigenvalue of a square matrix A. The geometric multiplicity of λ is the dimension of the λ -eigenspace.

Theorem

Let λ be an eigenvalue of a square matrix A. Then

1 \le (the geometric multiplicity of λ) \le (the algebraic multiplicity of λ).

The proof is beyond the scope of this course.

Corollary

Let λ be an eigenvalue of a square matrix A. If the algebraic multiplicity of λ is 1, then the geometric multiplicity is also 1.

The Diagonalization Theorem (Alternate Form)

Let A be an $n \times n$ matrix. The following are equivalent:

- 1. A is diagonalizable.
- 2. The sum of the geometric multiplicities of the eigenvalues of A equals n.
- 3. The sum of the algebraic multiplicities of the eigenvalues of A equals n , and the geometric multiplicity equals the algebraic multiplicity of each eigenvalue.

Non-Distinct Eigenvalues **Examples**

Example

If A has n distinct eigenvalues, then the algebraic multiplicity of each equals 1, hence so does the geometric multiplicity, and therefore A is diagonalizable.

For example,
$$
A = \begin{pmatrix} 1/2 & 3/2 \\ 3/2 & 1/2 \end{pmatrix}
$$
 has eigenvalues -1 and 2, so it is diagonalizable.

Example

The matrix
$$
A = \begin{pmatrix} 4 & -3 & 0 \\ 2 & -1 & 0 \\ 1 & -1 & 1 \end{pmatrix}
$$
 has characteristic polynomial

$$
f(\lambda) = -(\lambda - 1)^2(\lambda - 2).
$$

The algebraic multiplicities of 1 and 2 are 2 and 1, respectively. They sum to 3. We showed before that the geometric multiplicity of 1 is 2 (the 1-eigenspace has dimension 2). The eigenvalue 2 automatically has geometric multiplicity 1. Hence the geometric multiplicities add up to 3, so A is diagonalizable.

Non-Distinct Eigenvalues

Another example

Example

The matrix $A = \begin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}$ has characteristic polynomial $f(\lambda) = (\lambda - 1)^2$.

It has one eigenvalue 1 of algebraic multiplicity 2.

We showed before that the geometric multiplicity of 1 is 1 (the 1-eigenspace has dimension 1).

Since the geometric multiplicity is smaller than the algebraic multiplicity, the matrix is not diagonalizable.

$$
\text{Let } D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}.
$$

Fix a vector v_0 , and let $v_1 = Dv_0$, $v_2 = Dv_1$, etc., so $v_n = D^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Answer: Note that D is diagonal, so

$$
D^n \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 1^n & 0 \\ 0 & 1/2^n \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} a \\ b/2^n \end{pmatrix}.
$$

So the x-coordinate of v_n equals the x-coordinate of v_0 , and the y-coordinate gets halved every time.

Picture

So all vectors get "sucked into the x-axis," which is the 1-eigenspace.

More complicated example

Let
$$
A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}
$$
.

Fix a vector v_0 , and let $v_1 = Av_0$, $v_2 = Av_1$, etc., so $v_n = A^n v_0$.

Question: What happens to the v_i 's for different choices of v_0 ?

Answer: We want to compute powers of A, so this is a diagonalization question. The characteristic polynomial is

$$
f(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A) = \lambda^2 - \frac{3}{2}\lambda + \frac{1}{2} = (\lambda - 1)(\lambda - \frac{1}{2}).
$$

We compute eigenvectors with eigenvalues 1 and $1/2$ to be, respectively,

$$
w_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \qquad w_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.
$$

Therefore, $A = PDP^{-1}$ for $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 \\ 0 & 1/2 \end{pmatrix}.$

This is the same matrix D from before. Hence

$$
v_n=A^n v_0=PD^nP^{-1}v_0.
$$

Picture of the more complicated example

Recall: $A^n = PD^nP^{-1}$ acts on the B-coordinates in the same way that D^n acts on the usual coordinates, where $\mathcal{B} = \{w_1, w_2\}$.

So all vectors get "sucked into the 1-eigenspace." [\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/similarity.html?C=1,1:1,-1&B=1,0:0,.5&range2=8&dynamics=on&labels=w1,w2&BName=D)

Remark

The matrix
$$
A = \begin{pmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{pmatrix}
$$
 is called a **stochastic matrix**.

Summary

- A matrix A is **diagonalizable** if it is similar to a diagonal matrix D : $A = PDP^{-1}$.
- ► It is easy to take powers of diagonalizable matrices: $A^r = P D^r P^{-1}$.
- An $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors v_1, v_2, \ldots, v_n , in which case $A = PDP^{-1}$ for

$$
P = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_n \\ | & | & & | \end{pmatrix} \qquad D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}
$$

.

- If A has n distinct eigenvalues, then it is diagonalizable.
- **Figure 1** The geometric multiplicity of an eigenvalue λ is the dimension of the λ -eigenspace.
- \blacktriangleright 1 \lt (geometric multiplicity) \lt (algebraic multiplicity).
- An $n \times n$ matrix is diagonalizable if and only if the sum of the geometric multiplicities is n.