Announcements Monday, November 13

- \triangleright The third midterm is on this Friday, November 17.
	- The exam covers $\S 3.1, 3.2, 5.1, 5.2, 5.3,$ and 5.5.
	- \triangleright About half the problems will be conceptual, and the other half computational.
- \triangleright There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be $\pm 1-2$ problems).
- \blacktriangleright Study tips:
	- \triangleright There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
	- \blacktriangleright Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
	- \triangleright Sit down to do the practice midterm in 50 minutes, with no notes.
	- \triangleright Come to office hours!
- \blacktriangleright WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.
- \triangleright Double Rabinoffice hours this week: Monday, 1-3pm; Tuesday, 9-11am; Thursday, 9–11am; Thursday, 12–2pm.
- \triangleright Suggest topics for Wednesday's lecture on Piazza.

 2×2 case

Theorem

Let A be a 2 \times 2 matrix with complex (non-real) eigenvalue λ , and let v be an eigenvector. Then

$$
A = PCP^{-1}
$$

where

$$
P = \begin{pmatrix} | & | \\ \operatorname{Re} v & \operatorname{Im} v \\ | & | \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix}.
$$

The matrix C is a composition of rotation by $-\arg(\lambda)$ and scaling by $|\lambda|$:

$$
C = \begin{pmatrix} |\lambda| & 0 \\ 0 & |\lambda| \end{pmatrix} \begin{pmatrix} \cos(-\arg(\lambda)) & -\sin(-\arg(\lambda)) \\ \sin(-\arg(\lambda)) & \cos(-\arg(\lambda)) \end{pmatrix}.
$$

A 2 \times 2 matrix with complex eigenvalue λ is similar to (rotation by the argument of $\overline{\lambda}$) composed with (scaling by $|\lambda|$). This is multiplication by $\overline{\lambda}$ in $C \sim R^2$.

 2×2 example

What does
$$
A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}
$$
 do geometrically?

 2×2 example, continued

$$
\mathsf{A}=\mathsf{C}=\begin{pmatrix}1&-1\\1&1\end{pmatrix}\qquad\lambda=1-i
$$

Another 2×2 example

What does
$$
A = \begin{pmatrix} \sqrt{3}+1 & -2 \\ 1 & \sqrt{3}-1 \end{pmatrix}
$$
 do geometrically?

Another 2×2 example, continued

$$
A = \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix} \qquad C = \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} \qquad \lambda = \sqrt{3} - i
$$

Another 2×2 example: picture

 $A = P C P^{-1}$ does the same thing, but with respect to the basis $\mathcal{B}=\left\{\left(\begin{smallmatrix}1\1 \end{smallmatrix}\right), \, \left(\begin{smallmatrix}-1\0 \end{smallmatrix}\right)\right\}$ of columns of P :

Classification of 2×2 Matrices with a Complex Eigenvalue **Triptych**

Let A be a real matrix with a complex eigenvalue λ . One way to understand the geometry of A is to consider the difference equation $v_{n+1} = Av_n$, i.e. the sequence of vectors v, Av, A^2v, \ldots

Complex Versus Two Real Eigenvalues

An analogy

Theorem

Let A be a 2 × 2 matrix with complex eigenvalue $\lambda = a + bi$ (where $b \neq 0$), and let v be an eigenvector. Then

$$
A = PCP^{-1}
$$

where

$$
P = \begin{pmatrix} | & | \\ \text{Re } v & \text{Im } v \\ | & | \end{pmatrix} \quad \text{and} \quad C = (\text{rotation}) \cdot (\text{scaling}).
$$

This is very analogous to diagonalization. In the 2×2 case:

Theorem

Let A be a 2×2 matrix with linearly independent eigenvectors v_1 , v_2 and associated eigenvalues λ_1, λ_2 . Then

$$
A = PDP^{-1}
$$

scale x-axis by λ_1 scale y-axis by λ_2

where

$$
P = \begin{pmatrix} | & | \\ v_1 & v_2 \\ | & | \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}
$$

Picture with 2 Real Eigenvalues

We can draw analogous pictures for a matrix with 2 real eigenvalues.

Example: Let $A = \frac{1}{4}$ 4 $\begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$. This has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = \frac{1}{2}$, with eigenvectors $v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ 1 and $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$ 1 $\big)$. Therefore, $A = PDP^{-1}$ with $P=\begin{pmatrix} 1 & -1 \ 1 & 1 \end{pmatrix}$ and $D=\begin{pmatrix} 2 & 0 \ 0 & \frac{1}{2} \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$. 2

So A scales the v_1 -direction by 2 and the v_2 -direction by $\frac{1}{2}$.

Picture with 2 Real Eigenvalues

We can also draw a picture from the perspective a difference equation: in other words, we draw v, Av, A^2v, \ldots

Exercise: Draw analogous pictures when $|\lambda_1|, |\lambda_2|$ are any combination of $< 1, = 1, > 1.$

Theorem

Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity. Then $A = PCP^{-1}$, where P and C are as follows:

- 1. C is block diagonal, where the blocks are 1×1 blocks containing the real eigenvalues (with their multiplicities), or 2×2 blocks containing the matrices $\begin{pmatrix} \text{Re }\lambda & \text{Im }\lambda \\ \text{Im }\lambda & \text{Re }\lambda \end{pmatrix}$ $-$ Im λ Re λ) for each non-real eigenvalue λ (with multiplicity).
- 2. The columns of P form bases for the eigenspaces for the real eigenvectors, or come in pairs (Re $v \,$ lm v) for the non-real eigenvectors.

For instance, if A is a 3 \times 3 matrix with one real eigenvalue λ_1 with eigenvector v_1 , and one conjugate pair of complex eigenvalues $\lambda_2, \overline{\lambda}_2$ with eigenvectors v_2, \overline{v}_2 , then

$$
P = \begin{pmatrix} | & | & | \\ v_1 & Re v_2 & Im v_2 \\ | & | & | & | \end{pmatrix} \quad C = \begin{pmatrix} \boxed{\lambda_1} & 0 & 0 \\ 0 & Re \lambda_2 & Im \lambda_2 \\ 0 & -Im \lambda_2 & Re \lambda_2 \end{pmatrix}
$$

The Higher-Dimensional Case **Example**

Let $A =$ $\sqrt{2}$ \mathcal{L} $1 \quad -1 \quad 0$ 1 1 0 0 0 2 \setminus). This acts on the xy-plane by rotation by $\pi/4$ and scaling by $\sqrt{2}$. This acts on the z-axis by scaling by 2. Pictures: x y z x y from above [\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/similarity.html?C=-.25062,-.71864,.64864:.93934,-.34258,-.01661:.23415,.60514,.76091&B=1,-1,0:1,1,0:0,0,2&BName=C&dynamics=on&reference=circle&range2=10) \rightarrow x z looking down y-axis

Remember, in general $A = PCP^{-1}$ is only similar to such a matrix C : so the x, y, z axes have to be replaced by the columns of P .

Summary

 \triangleright There is a procedure analogous to diagonalization for matrices with complex eigenvalues. In the 2×2 case, the result is

$$
A = PCP^{-1}
$$

where C is a rotation-scaling matrix.

- \triangleright Multiplication by a 2 × 2 matrix with a complex eigenvalue λ spirals out if $|\lambda| > 1$, rotates around an ellipse if $|\lambda| = 1$, and spirals in if $|\lambda| < 1$.
- \blacktriangleright There are analogous pictures for 2 \times 2 matrices with real eigenvalues.
- \triangleright For larger matrices, you have to combine diagonalization and "complex diagonalization". You get a block diagonal matrix with scalars and rotation-scaling matrices on the diagonal.