- ► The third midterm is on this Friday, November 17.
 - ► The exam covers §§3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
 - About half the problems will be conceptual, and the other half computational.
- ▶ There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ± 1 –2 problems).
- Study tips:
 - ► There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
 - Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
 - Sit down to do the practice midterm in 50 minutes, with no notes.
 - Come to office hours!
- ▶ WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.
- ▶ Double Rabinoffice hours this week: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.
- Suggest topics for Wednesday's lecture on Piazza.

Theorem

Let A be a 2×2 matrix with complex (non-real) eigenvalue λ , and let v be an eigenvector. Then

$$A = PCP^{-1}$$

where

$$P = \begin{pmatrix} | & | \\ \operatorname{Re} v & \operatorname{Im} v \\ | & | \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix}.$$

The matrix C is a composition of rotation by $-\arg(\lambda)$ and scaling by $|\lambda|$:

$$C = \begin{pmatrix} |\lambda| & 0 \\ 0 & |\lambda| \end{pmatrix} \begin{pmatrix} \cos(-\arg(\lambda)) & -\sin(-\arg(\lambda)) \\ \sin(-\arg(\lambda)) & \cos(-\arg(\lambda)) \end{pmatrix}.$$

A 2×2 matrix with complex eigenvalue λ is similar to (rotation by the argument of $\overline{\lambda}$) composed with (scaling by $|\lambda|$). This is multiplication by $\overline{\lambda}$ in $\mathbf{C}\sim\mathbf{R}^2$.

Geometric Interpretation of Complex Eigenvalues 2 × 2 example

What does
$$A = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 do geometrically?

▶ The characteristic polynomial is

$$f(\lambda) = \lambda^2 - \text{Tr}(A) \lambda + \text{det}(A) = \lambda^2 - 2\lambda + 2.$$

The roots are

$$\frac{2\pm\sqrt{4-8}}{2}=1\pm i.$$

▶ Let $\lambda = 1 - i$. We compute an eigenvector v:

$$A - \lambda I = \begin{pmatrix} i & -1 \\ \star & \star \end{pmatrix} \iff v = \begin{pmatrix} 1 \\ i \end{pmatrix}.$$

▶ Therefore, $A = PCP^{-1}$ where

$$P = \left(\operatorname{Re} \begin{pmatrix} 1 \\ i \end{pmatrix} & \operatorname{Im} \begin{pmatrix} 1 \\ i \end{pmatrix} \right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$C = \left(\begin{array}{cc} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$

Geometric Interpretation of Complex Eigenvalues

 2×2 example, continued

$$A = C = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \qquad \lambda = 1 - i$$

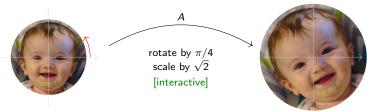
▶ The matrix C = A scales by a factor of

$$|\lambda| = \sqrt{1^2 + 1^2} = \sqrt{2}.$$

▶ The argument of λ is $-\pi/4$:

Therefore C = A rotates by $+\pi/4$.

• (We already knew this because $A = \sqrt{2}$ times the matrix for rotation by $\pi/4$ from before.)



Geometric Interpretation of Complex Eigenvalues Another 2 × 2 example

What does
$$A = \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix}$$
 do geometrically?

► The characteristic polynomial is

$$f(\lambda) = \lambda^2 - \text{Tr}(A) \lambda + \text{det}(A) = \lambda^2 - 2\sqrt{3} \lambda + 4.$$

The roots are

$$\frac{2\sqrt{3} \pm \sqrt{12 - 16}}{2} = \sqrt{3} \pm i.$$

Let $\lambda = \sqrt{3} - i$. We compute an eigenvector v:

$$A - \lambda I = \begin{pmatrix} 1+i & -2 \\ \star & \star \end{pmatrix} \land v = \begin{pmatrix} 1-i \\ 1 \end{pmatrix}.$$

▶ It follows that $A = PCP^{-1}$ where

$$\begin{split} P &= \left(\, \operatorname{Re} \begin{pmatrix} 1-i \\ 1 \end{pmatrix} \quad \operatorname{Im} \begin{pmatrix} 1-i \\ 1 \end{pmatrix} \right) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \\ C &= \begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix} = \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix}. \end{split}$$

Geometric Interpretation of Complex Eigenvalues

Another 2×2 example, continued

$$A = \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix} \qquad C = \begin{pmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{pmatrix} \qquad \lambda = \sqrt{3} - i$$

▶ The matrix *C* scales by a factor of

$$|\lambda| = \sqrt{(\sqrt{3})^2 + (-1)^2} = \sqrt{4} = 2.$$

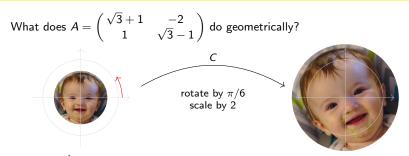
▶ The argument of λ is $-\pi/6$:

$$\frac{\pi}{\sqrt{3}}$$

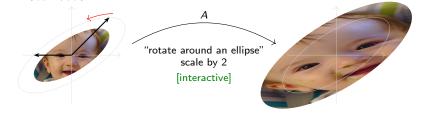
Therefore C rotates by $+\pi/6$.

Geometric Interpretation of Complex Eigenvalues

Another 2×2 example: picture



 $A = PCP^{-1}$ does the same thing, but with respect to the basis $\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix} \right\}$ of columns of P:



Classification of 2×2 Matrices with a Complex Eigenvalue $_{\text{Triptych}}$

Let A be a real matrix with a complex eigenvalue λ . One way to understand the geometry of A is to consider the difference equation $v_{n+1} = Av_n$, i.e. the sequence of vectors v, Av, A^2v, \ldots

$$A = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix} \qquad A = \frac{1}{2} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix} \qquad A = \frac{1}{2\sqrt{2}} \begin{pmatrix} \sqrt{3} + 1 & -2 \\ 1 & \sqrt{3} - 1 \end{pmatrix}$$

$$\lambda = \frac{\sqrt{3} - i}{\sqrt{2}} \qquad \qquad \lambda = \frac{\sqrt{3} - i}{2\sqrt{2}}$$

$$|\lambda| > 1 \qquad \qquad |\lambda| = 1 \qquad \qquad |\lambda| < 1$$
"spirals out" "rotates around an ellipse" "spirals in" [interactive]

Complex Versus Two Real Eigenvalues

Theorem

Let A be a 2×2 matrix with complex eigenvalue $\lambda = a + bi$ (where $b \neq 0$), and let v be an eigenvector. Then

$$A = PCP^{-1}$$

where

$$P = \begin{pmatrix} | & | \\ \operatorname{Re} v & \operatorname{Im} v \\ | & | \end{pmatrix}$$
 and $C = (\operatorname{rotation}) \cdot (\operatorname{scaling}).$

This is very analogous to diagonalization. In the 2×2 case:

Theorem

Let A be a 2×2 matrix with linearly independent eigenvectors v_1,v_2 and associated eigenvalues λ_1,λ_2 . Then

$$A = PDP^{-1}$$

where

$$P = \begin{pmatrix} | & | \\ v_1 & v_2 \\ | & | \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$

scale x-axis by λ_1

Picture with 2 Real Eigenvalues

We can draw analogous pictures for a matrix with 2 real eigenvalues.

Example: Let $A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix}$.

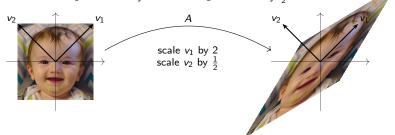
This has eigenvalues $\lambda_1=2$ and $\lambda_2=\frac{1}{2}$, with eigenvectors

$$v_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $v_2 = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

Therefore, $A = PDP^{-1}$ with

$$P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$$
 and $D = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

So A scales the v_1 -direction by 2 and the v_2 -direction by $\frac{1}{2}$.



Picture with 2 Real Eigenvalues

We can also draw a picture from the perspective a difference equation: in other words, we draw v, Av, A^2v, \dots

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} \qquad \begin{array}{c} \lambda_1 = 2 \\ |\lambda_1| > 1 \end{array} \qquad |\lambda_1| < 1$$

$$A^3 \qquad \qquad A^3 \qquad \qquad \begin{bmatrix} \text{interactive} \end{bmatrix}$$

Exercise: Draw analogous pictures when $|\lambda_1|, |\lambda_2|$ are any combination of <1,=1,>1.

The Higher-Dimensional Case

Theorem

Let A be a real $n \times n$ matrix. Suppose that for each (real or complex) eigenvalue, the dimension of the eigenspace equals the algebraic multiplicity. Then $A = PCP^{-1}$, where P and C are as follows:

- 1. C is **block diagonal**, where the blocks are 1×1 blocks containing the real eigenvalues (with their multiplicities), or 2×2 blocks containing the matrices $\begin{pmatrix} \operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda \end{pmatrix}$ for each non-real eigenvalue λ (with multiplicity).
- 2. The columns of P form bases for the eigenspaces for the real eigenvectors, or come in pairs (Re $v \, \text{Im} \, v$) for the non-real eigenvectors.

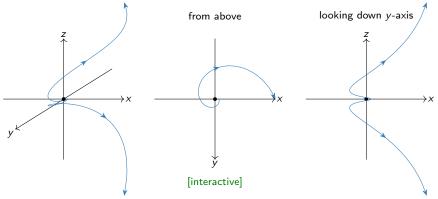
For instance, if A is a 3×3 matrix with one real eigenvalue λ_1 with eigenvector v_1 , and one conjugate pair of complex eigenvalues $\lambda_2, \overline{\lambda}_2$ with eigenvectors v_2, \overline{v}_2 , then

$$P = \begin{pmatrix} | & | & | \\ v_1 & \operatorname{Re} v_2 & \operatorname{Im} v_2 \\ | & | & | \end{pmatrix} \quad C = \begin{pmatrix} \boxed{\lambda_1} & 0 & 0 \\ 0 & \operatorname{Re} \lambda_2 & \operatorname{Im} \lambda_2 \\ 0 & -\operatorname{Im} \lambda_2 & \operatorname{Re} \lambda_2 \end{pmatrix}$$

The Higher-Dimensional Case Example

Let
$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
. This acts on the xy -plane by rotation by $\pi/4$ and

scaling by $\sqrt{2}$. This acts on the z-axis by scaling by 2. Pictures:



Remember, in general $A = PCP^{-1}$ is only *similar* to such a matrix C: so the x, y, z axes have to be replaced by the columns of P.

Summary

 \blacktriangleright There is a procedure analogous to diagonalization for matrices with complex eigenvalues. In the 2 \times 2 case, the result is

$$A = PCP^{-1}$$

where C is a rotation-scaling matrix.

- Multiplication by a 2×2 matrix with a complex eigenvalue λ spirals out if $|\lambda| > 1$, rotates around an ellipse if $|\lambda| = 1$, and spirals in if $|\lambda| < 1$.
- ▶ There are analogous pictures for 2×2 matrices with real eigenvalues.
- For larger matrices, you have to combine diagonalization and "complex diagonalization". You get a block diagonal matrix with scalars and rotation-scaling matrices on the diagonal.