- ► The third midterm is on this Friday, November 17.
 - ▶ The exam covers §§3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
 - About half the problems will be conceptual, and the other half computational.
- ▶ There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ± 1 –2 problems).
- ► Study tips:
 - There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
 - Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
 - ▶ Sit down to do the practice midterm in 50 minutes, with no notes.
 - Come to office hours!
- ▶ WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.
- ▶ Double Rabinoffice hours this week: Monday, 1–3pm; Tuesday, 9–11am; Thursday, 9–11am; Thursday, 12–2pm.
- ► My review session **tomorrow**, 7–8pm, Howie L4. TA review session **tonight**, 4–6pm, in the Culc.

Chapter 6

Orthogonality and Least Squares

Section 6.1

Inner Product, Length, and Orthogonality

Orientation

Recall: This course is about learning to:

- ▶ Solve the matrix equation Ax = b
- ▶ Solve the matrix equation $Ax = \lambda x$
- ▶ Almost solve the equation Ax = b

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v.

Due to measurement error, though, the measured x is not actually in $\mathrm{Span}\{u,v\}$. In other words, the equation au+bv=x has no solution. What do you do? The real value is probably the *closest* point to x on $\mathrm{Span}\{u,v\}$. Which point is that?

The Dot Product

We need a notion of *angle* between two vectors, and in particular, a notion of *orthogonality* (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

Thinking of x, y as column vectors, this is the same as $x^T y$.

Example

$$\begin{pmatrix}1\\2\\3\end{pmatrix}\cdot\begin{pmatrix}4\\5\\6\end{pmatrix}=\begin{pmatrix}1&2&3\end{pmatrix}\begin{pmatrix}4\\5\\6\end{pmatrix}=$$

Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

- $\triangleright x \cdot y = y \cdot x$
- $(x+y) \cdot z = x \cdot z + y \cdot z$
- $(cx) \cdot y = c(x \cdot y)$

Dotting a vector with itself is special:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.$$

Hence:

- $\rightarrow x \cdot x > 0$
- $\triangleright x \cdot x = 0$ if and only if x = 0.

Important: $x \cdot y = 0$ does *not* imply x = 0 or y = 0. For example, $\binom{1}{0} \cdot \binom{0}{1} = 0$.

The Dot Product and Length

Definition

The **length** or **norm** of a vector x in \mathbb{R}^n is

$$||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Why is this a good definition? The Pythagorean theorem!

$$\left\| \begin{pmatrix} 3\\4 \end{pmatrix} \right\| = \sqrt{3^2 + 4^2} = 5$$

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$\left\| \begin{pmatrix} 6 \\ 8 \end{pmatrix} \right\| = \left\| 2 \begin{pmatrix} 3 \\ 4 \end{pmatrix} \right\| =$$

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

$$\mathsf{dist}(x,y) = \|y - x\|.$$

This is just the length of the vector from x to y.

Example

Let x = (1, 2) and y = (4, 4). Then

$$dist(x, y) =$$

Unit Vectors

Definition

A unit vector is a vector v with length ||v|| = 1.

Example

The unit coordinate vectors are unit vectors:

$$\|e_1\| = \left\| egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}
ight\| = \sqrt{1^2 + 0^2 + 0^2} = 1$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\|x\|}$.

This is in fact a unit vector:

$$\frac{|x|}{||x||} = \frac{1}{||x||} ||x|| = 1.$$

Unit Vectors Example

Example

What is the unit vector in the direction of
$$x = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$$
?

Orthogonality

Definition

Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$.

Notation: $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!

Fact:
$$x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2$$

Orthogonality Example

Problem: Find *all* vectors orthogonal to
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
.

Orthogonality Example

Problem: Find *all* vectors orthogonal to both
$$v = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Orthogonality

General procedure

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n .

This is the same as finding all vectors x such that

$$0 = v_1^T x = v_2^T x = \cdots = v_m^T x.$$

Putting the *row* vectors
$$v_1^T, v_2^T, \dots, v_m^T$$
 into a matrix, this is the same as finding all x such that
$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix} x = \begin{pmatrix} v_1 \cdot x \\ v_2 \cdot x \\ \vdots \\ v_m \cdot x \end{pmatrix} = 0.$$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n is the *null space* of the $m \times n$ matrix you get by "turning them sideways and smooshing them together: $\!\!\!\!^{\prime\prime}$

$$\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_2^T - \end{pmatrix}$$

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbb{R}^n . Its **orthogonal complement** is

$$W^{\perp} = \left\{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \right\}$$
 read "W perp".
$$W^{\perp} \text{ is orthogonal complement}$$

$$A^T \text{ is transpose}$$

Pictures:

The orthogonal complement of a line in ${\bf R}^2$ is the perpendicular line. [interactive]

The orthogonal complement of a line in ${\bf R}^3$ is the perpendicular plane. [interactive]

The orthogonal complement of a plane in ${\bf R}^3$ is the perpendicular line. [interactive]

Poll

Let W be a subspace of \mathbf{R}^n .

Facts:

- 1. W^{\perp} is also a subspace of \mathbb{R}^n
- 2. $(W^{\perp})^{\perp} = W$
- 3. dim $W + \dim W^{\perp} = n$
- 4. If $W = \text{Span}\{v_1, v_2, \dots, v_m\}$, then

$$\begin{split} \boldsymbol{W}^{\perp} &= \text{all vectors orthogonal to each } \boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_m \\ &= \left\{ \boldsymbol{x} \text{ in } \mathbf{R}^n \mid \boldsymbol{x} \cdot \boldsymbol{v}_i = 0 \text{ for all } i = 1, 2, \dots, m \right\} \\ &= \text{Nul} \begin{pmatrix} \boldsymbol{-} \boldsymbol{v}_1^T \boldsymbol{-} \\ \boldsymbol{-} \boldsymbol{v}_2^T \boldsymbol{-} \\ \vdots \\ \boldsymbol{-} \boldsymbol{v}_m^T \boldsymbol{-} \end{pmatrix}. \end{split}$$

Orthogonal Complements Computation

Problem: if
$$W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
, compute W^{\perp} .

[interactive]

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

Definition

The **row space** of an $m \times n$ matrix A is the span of the *rows* of A. It is denoted Row A. Equivalently, it is the column span of A^T :

$$Row A = Col A^T$$
.

It is a subspace of \mathbf{R}^n .

We showed before that if A has rows $v_1^T, v_2^T, \dots, v_m^T$, then

$$\mathsf{Span}\{v_1,v_2,\ldots,v_m\}^{\perp}=\,\mathsf{Nul}\,A.$$

Hence we have shown:

Fact: $(Row A)^{\perp} = Nul A$.

Replacing A by A^T , and remembering Row $A^T = \text{Col } A$:

Fact: $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: $(\text{Nul } A)^{\perp} = \text{Row } A \text{ and } \text{Col } A = (\text{Nul } A^{T})^{\perp}.$

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

$$\mathsf{Span}\{v_1, v_2, \dots, v_m\}^{\perp} = \mathsf{Nul} \begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}$$

For any matrix A:

$$Row A = Col A^T$$

and

$$(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A \qquad \operatorname{Row} A = (\operatorname{Nul} A)^{\perp}$$

 $(\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T} \qquad \operatorname{Col} A = (\operatorname{Nul} A^{T})^{\perp}$