Announcements Wednesday, November 15

- \triangleright The third midterm is on this Friday, November 17.
	- The exam covers $\S 3.1, 3.2, 5.1, 5.2, 5.3,$ and 5.5.
	- \triangleright About half the problems will be conceptual, and the other half computational.
- \triangleright There is a practice midterm posted on the website. It is identical in format to the real midterm (although there may be ± 1 –2 problems).
- \blacktriangleright Study tips:
	- \triangleright There are lots of problems at the end of each section in the book, and at the end of the chapter, for practice.
	- \blacktriangleright Make sure to learn the theorems and learn the definitions, and understand what they mean. There is a reference sheet on the website.
	- \triangleright Sit down to do the practice midterm in 50 minutes, with no notes.
	- \triangleright Come to office hours!
- \blacktriangleright WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.
- \triangleright Double Rabinoffice hours this week: Monday, 1-3pm; Tuesday, 9-11am; Thursday, 9–11am; Thursday, 12–2pm.
- \blacktriangleright My review session tomorrow, 7–8pm, Howie L4. TA review session tonight, 4–6pm, in the Culc.

Chapter 6

Orthogonality and Least Squares

Section 6.1

Inner Product, Length, and Orthogonality

Orientation

Recall: This course is about learning to:

- \triangleright Solve the matrix equation $Ax = b$
- \triangleright Solve the matrix equation $Ax = \lambda x$
- Almost solve the equation $Ax = b$

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x which you know for theoretical reasons must lie on a plane spanned by two vectors u and v .

Due to measurement error, though, the measured x is not actually in Span $\{u, v\}$. In other words, the equation $au + bv = x$ has no solution. What do you do? The real value is probably the *closest* point to x on Span $\{u, v\}$. Which point is that?

The Dot Product

We need a notion of *angle* between two vectors, and in particular, a notion of orthogonality (i.e. when two vectors are perpendicular). This is the purpose of the dot product.

Definition

The **dot product** of two vectors x, y in \mathbb{R}^n is

$$
x \cdot y = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \stackrel{\text{def}}{=} x_1y_1 + x_2y_2 + \cdots + x_ny_n.
$$

Thinking of x, y as column vectors, this is the same as $x^T y$.

Example

$$
\begin{pmatrix}1\\2\\3\end{pmatrix}\cdot \begin{pmatrix}4\\5\\6\end{pmatrix} = \begin{pmatrix}1&2&3\end{pmatrix}\begin{pmatrix}4\\5\\6\end{pmatrix} =
$$

Many usual arithmetic rules hold, as long as you remember you can only dot two vectors together, and that the result is a scalar.

$$
\blacktriangleright\ x\cdot y=y\cdot x
$$

$$
\blacktriangleright (x + y) \cdot z = x \cdot z + y \cdot z
$$

$$
\blacktriangleright (cx) \cdot y = c(x \cdot y)
$$

Dotting a vector with itself is special:

$$
\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = x_1^2 + x_2^2 + \dots + x_n^2.
$$

Hence:

 \blacktriangleright $x \cdot x > 0$

 $\times x \cdot x = 0$ if and only if $x = 0$.

Important: $x \cdot y = 0$ does *not* imply $x = 0$ or $y = 0$. For example, $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = 0$.

The Dot Product and Length

Definition

The length or norm of a vector x in \mathbb{R}^n is

$$
||x|| = \sqrt{x \cdot x} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.
$$

Why is this a good definition? The Pythagorean theorem!

Fact

If x is a vector and c is a scalar, then $||cx|| = |c| \cdot ||x||$.

$$
\left\| \binom{6}{8} \right\| = \left\| 2 \binom{3}{4} \right\| =
$$

The Dot Product and Distance

Definition

The **distance** between two points x, y in \mathbb{R}^n is

dist(x, y) = $||y - x||$.

This is just the length of the vector from x to y .

Example

Let $x = (1, 2)$ and $y = (4, 4)$. Then

 $dist(x, y) =$

Unit Vectors

Definition

A unit vector is a vector v with length $\|v\| = 1$.

Example

The unit coordinate vectors are unit vectors:

$$
\|e_1\| = \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \right\| = \sqrt{1^2 + 0^2 + 0^2} = 1
$$

Definition

Let x be a nonzero vector in \mathbf{R}^n . The unit vector in the direction of x is the vector $\frac{x}{\| \cdot \|}$ $\frac{\lambda}{\|x\|}$.

This is in fact a unit vector:

scalar
$$
\left\| \frac{x}{\|x\|} \right\| = \frac{1}{\|x\|} \|x\| = 1.
$$

Unit Vectors **Example**

Example

What is the unit vector in the direction of $x = \begin{pmatrix} 3 & 1 \ 3 & 3 \end{pmatrix}$ 4 $\big)$?

Orthogonality

Definition Two vectors x, y are **orthogonal** or **perpendicular** if $x \cdot y = 0$. *Notation:* $x \perp y$ means $x \cdot y = 0$.

Why is this a good definition? The Pythagorean theorem / law of cosines!

$$
Fact: x \perp y \iff ||x - y||^2 = ||x||^2 + ||y||^2
$$

Orthogonality Example

Problem: Find *all* vectors orthogonal to $v =$ $\sqrt{ }$ $\overline{1}$ 1 1 −1 \setminus $\vert \cdot$

Orthogonality Example

Problem: Find all vectors orthogonal to both $v =$

$$
\begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}
$$
 and $w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Problem: Find all vectors orthogonal to some number of vectors v_1, v_2, \ldots, v_m in \mathbf{R}^n .

This is the same as finding all vectors x such that

$$
0 = v_1^T x = v_2^T x = \cdots = v_m^T x.
$$

Putting the row vectors $v_1^{\mathcal{T}}, v_2^{\mathcal{T}}, \ldots, v_m^{\mathcal{T}}$ into a matrix, this is the same as finding all x such that

$$
\begin{pmatrix}\n-v_1^T - \\
-v_2^T - \\
\vdots \\
-v_m^T -\n\end{pmatrix} x = \begin{pmatrix}\nv_1 \cdot x \\
v_2 \cdot x \\
\vdots \\
v_m \cdot x\n\end{pmatrix} = 0.
$$

 $\sqrt{ }$

 $-\nu$ T n_1' — $-\nu$ T . 2^{\prime} — . . $-\nu$ T $\frac{1}{m}$ —

 \setminus

 $\vert \cdot$

 $\overline{}$

Important

The set of all vectors orthogonal to some vectors v_1, v_2, \ldots, v_m in \mathbb{R}^n is the *null space* of the $m \times n$ matrix you get by "turning them sideways and smooshing them together:"

In particular, this set is a subspace!

Orthogonal Complements

Definition

Let W be a subspace of \mathbb{R}^n . Its orthogonal complement is

$$
W^{\perp}_{\uparrow} = \{ v \text{ in } \mathbb{R}^n \mid v \cdot w = 0 \text{ for all } w \text{ in } W \} \qquad \text{read "W perp".}
$$

$$
W^{\perp} \text{ is orthogonal complement}
$$

$$
A^T \text{ is transpose}
$$

Pictures:

The orthogonal complement of a line in R^2 is the perpendicular line. **Example 20** *interactive*

The orthogonal complement of a line in \mathbf{R}^3 is the perpendicular plane. The same state of the perpendicular plane.

The orthogonal complement of a plane in \mathbf{R}^3 is the perpendicular line. The state of the series of the ser

Poll

Orthogonal Complements Basic properties

Let W be a subspace of \mathbb{R}^n .

Facts:

1. W^{\perp} is also a subspace of \mathbf{R}^{n} 2. $(W^{\perp})^{\perp} = W$ 3. dim W + dim $W^{\perp} = n$ 4. If $W = \text{Span}\{v_1, v_2, \ldots, v_m\}$, then W^{\perp} = all vectors orthogonal to each v_1, v_2, \ldots, v_m $=\{x \text{ in } \mathbb{R}^n \mid x \cdot v_i = 0 \text{ for all } i = 1, 2, \ldots, m\}$ $=$ Nul $\sqrt{ }$ $\overline{}$ $-\mathbf{v_1}^{\mathsf{T}}$ — $- v_2^T -v_m^T$ — \setminus $\vert \cdot$

Orthogonal Complements

Computation

Problem: if
$$
W = \text{Span}\left\{ \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}
$$
, compute W^{\perp} .

[\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/spans.html?v1=1,1,-1&v2=1,1,1&range=3&captions=orthog)

$$
\mathsf{Span}\{v_1, v_2, \ldots, v_m\}^{\perp} = \mathsf{Nul}\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}
$$

Row space, column space, null space

Definition

The row space of an $m \times n$ matrix A is the span of the rows of A. It is denoted Row A. Equivalently, it is the column span of $\mathcal{A}^\mathcal{T}$:

$$
Row A = Col AT.
$$

It is a subspace of R^n .

We showed before that if A has rows $v_1^{\mathcal{T}}, v_2^{\mathcal{T}}, \ldots, v_m^{\mathcal{T}}$, then

$$
Span\{v_1, v_2, \ldots, v_m\}^{\perp} = Null A.
$$

Hence we have shown:

Fact: $(\text{Row } A)^{\perp} = \text{Null } A$.

Replacing A by A^T , and remembering Row $A^T = \mathsf{Col}\,A$:

Fact: $(Col A)^{\perp} = Nul A^{T}$.

Using property 2 and taking the orthogonal complements of both sides, we get: Fact: $(Nul A)^{\perp} = Row A$ and $Col A = (Nul A^{T})^{\perp}$.

Orthogonal Complements of Most of the Subspaces We've Seen

For any vectors v_1, v_2, \ldots, v_m :

$$
\text{Span}\{v_1, v_2, \ldots, v_m\}^{\perp} = \text{Nul}\begin{pmatrix} -v_1^T - \\ -v_2^T - \\ \vdots \\ -v_m^T - \end{pmatrix}
$$

For any matrix A:

Row $A = Col A^T$

and

$$
(\text{Row } A)^{\perp} = \text{Nu} \, A \qquad \text{Row } A = (\text{Nu} \, A)^{\perp}
$$

$$
(\text{Col } A)^{\perp} = \text{Nu} \, A^T \qquad \text{Col } A = (\text{Nu} \, A^T)^{\perp}
$$