
Announcements
Wednesday, November 15

I The third midterm is on this Friday, November 17.
I The exam covers §§3.1, 3.2, 5.1, 5.2, 5.3, and 5.5.
I About half the problems will be conceptual, and the other half

computational.

I There is a practice midterm posted on the website. It is identical in format
to the real midterm (although there may be ±1–2 problems).

I Study tips:
I There are lots of problems at the end of each section in the book, and at

the end of the chapter, for practice.
I Make sure to learn the theorems and learn the definitions, and understand

what they mean. There is a reference sheet on the website.
I Sit down to do the practice midterm in 50 minutes, with no notes.
I Come to office hours!

I WeBWorK 5.3, 5.5 are due Wednesday at 11:59pm.

I Double Rabinoffice hours this week: Monday, 1–3pm; Tuesday, 9–11am;
Thursday, 9–11am; Thursday, 12–2pm.

I My review session tomorrow, 7–8pm, Howie L4.
TA review session tonight, 4–6pm, in the Culc.



Chapter 6

Orthogonality and Least Squares



Section 6.1

Inner Product, Length, and Orthogonality



Orientation

Recall: This course is about learning to:

I Solve the matrix equation Ax = b

I Solve the matrix equation Ax = λx

I Almost solve the equation Ax = b

We are now aiming at the last topic.

Idea: In the real world, data is imperfect. Suppose you measure a data point x
which you know for theoretical reasons must lie on a plane spanned by two
vectors u and v .

u

v

x

Due to measurement error, though, the measured x is not actually in
Span{u, v}. In other words, the equation au + bv = x has no solution. What
do you do? The real value is probably the closest point to x on Span{u, v}.
Which point is that?



The Dot Product

We need a notion of angle between two vectors, and in particular, a notion of
orthogonality (i.e. when two vectors are perpendicular). This is the purpose of
the dot product.

Definition
The dot product of two vectors x , y in Rn is

x · y =


x1

x2

...
xn

 ·

y1

y2

...
yn

 def
= x1y1 + x2y2 + · · ·+ xnyn.

Thinking of x , y as column vectors, this is the same as xT y .

Example1
2
3

 ·
4

5
6

 =
(

1 2 3
)4

5
6

 = 1 · 4 + 2 · 5 + 3 · 6 = 32.



Properties of the Dot Product

Many usual arithmetic rules hold, as long as you remember you can only dot
two vectors together, and that the result is a scalar.

I x · y = y · x
I (x + y) · z = x · z + y · z
I (cx) · y = c(x · y)

Dotting a vector with itself is special:
x1

x2

...
xn

 ·

x1

x2

...
xn

 = x2
1 + x2

2 + · · ·+ x2
n .

Hence:

I x · x ≥ 0

I x · x = 0 if and only if x = 0.

Important: x · y = 0 does not imply x = 0 or y = 0. For example,
(

1
0

)
·
(

0
1

)
= 0.



The Dot Product and Length

Definition
The length or norm of a vector x in Rn is

‖x‖ =
√
x · x =

√
x2

1 + x2
2 + · · ·+ x2

n .

Why is this a good definition? The Pythagorean theorem!(
3
4

)
√ 3

2
+

4
2
=

5

3

4

∥∥∥∥(3
4

)∥∥∥∥ =
√

32 + 42 = 5

Fact
If x is a vector and c is a scalar, then ‖cx‖ = |c| · ‖x‖.∥∥∥∥(6

8

)∥∥∥∥ =

∥∥∥∥2

(
3
4

)∥∥∥∥ = 2

∥∥∥∥(3
4

)∥∥∥∥ = 10



The Dot Product and Distance

Definition
The distance between two points x , y in Rn is

dist(x , y) = ‖y − x‖.

This is just the length of the vector from x to y .

Example

Let x = (1, 2) and y = (4, 4). Then

dist(x , y) = ‖y − x‖ =

∥∥∥∥(3
2

)∥∥∥∥ =
√

32 + 22 =
√

13.

0

x

y

y −
x



Unit Vectors

Definition
A unit vector is a vector v with length ‖v‖ = 1.

Example

The unit coordinate vectors are unit vectors:

‖e1‖ =

∥∥∥∥∥∥
1

0
0

∥∥∥∥∥∥ =
√

12 + 02 + 02 = 1

Definition
Let x be a nonzero vector in Rn. The unit vector in the direction of x is the

vector
x

‖x‖ .

This is in fact a unit vector:∥∥∥∥ x

‖x‖

∥∥∥∥ =
1

‖x‖‖x‖ = 1.scalar



Unit Vectors
Example

Example

What is the unit vector in the direction of x =

(
3
4

)
?

u =
x

‖x‖ =
1√

32 + 42

(
3
4

)
=

1

5

(
3
4

)
.

x

u
0



Orthogonality

Definition
Two vectors x , y are orthogonal or perpendicular if x · y = 0.
Notation: x ⊥ y means x · y = 0.

Why is this a good definition? The Pythagorean theorem / law of cosines!

x

y

‖x‖

‖y‖

‖x − y‖

α

Law of cosines:

‖x−y‖2 = ‖x‖2 +‖y‖2−2‖x‖ ‖y‖ cosα

α = 90◦ ⇐⇒ cosα = 0

x and y are
perpendicular ⇐⇒ ‖x‖2 + ‖y‖2 = ‖x − y‖2

⇐⇒ x · x + y · y = (x − y) · (x − y)

⇐⇒ x · x + y · y = x · x + y · y − 2x · y
⇐⇒ x · y = 0

Fact: x ⊥ y ⇐⇒ ‖x − y‖2 = ‖x‖2 + ‖y‖2



Orthogonality
Example

Problem: Find all vectors orthogonal to v =

 1
1
−1

.

We have to find all vectors x such that x · v = 0. This means solving the
equation

0 = x · v =

x1

x2

x3

 ·
 1

1
−1

 = x1 + x2 − x3.

The parametric form for the solution is x1 = −x2 + x3, so the parametric vector
form of the general solution is

x =

x1

x2

x3

 = x2

−1
1
0

+ x3

1
0
1

 .

For instance,

−1
1
0

 ⊥
 1

1
−1

 because

−1
1
0

 ·
 1

1
−1

 = 0.



Orthogonality
Example

Problem: Find all vectors orthogonal to both v =

 1
1
−1

 and w =

1
1
1

.

Now we have to solve the system of two homogeneous equations

0 = x · v =

x1

x2

x3

 ·
 1

1
−1

 = x1 + x2 − x3

0 = x · w =

x1

x2

x3

 ·
1

1
1

 = x1 + x2 + x3.

In matrix form: (
1 1 − 1
1 1 1

)
rref

(
1 1 0
0 0 1

)
.

The parametric vector form of the solution isx1

x2

x3

 = x2

−1
1
0

 .

The rows are v and w



Orthogonality
General procedure

Problem: Find all vectors orthogonal to some number of vectors v1, v2, . . . , vm
in Rn.

This is the same as finding all vectors x such that

0 = vT
1 x = vT

2 x = · · · = vT
m x .

Putting the row vectors vT
1 , v

T
2 , . . . , v

T
m

into a matrix, this is the same as finding
all x such that


— vT

1 —
— vT

2 —...
— vT

m —

 x =


v1 · x
v2 · x...
vm · x

 = 0.

The set of all vectors orthogonal to some vec-
tors v1, v2, . . . , vm in Rn is the null space of
the m × n matrix you get by “turning them
sideways and smooshing them together:”


— vT

1 —
— vT

2 —...
— vT

m —

 .

In particular, this set is a subspace!

Important



Orthogonal Complements

Definition
Let W be a subspace of Rn. Its orthogonal complement is

W⊥ =
{
v in Rn | v · w = 0 for all w in W

}
read “W perp”.

W⊥ is orthogonal complement
AT is transpose

Pictures:

The orthogonal complement of a line in R2 is the
perpendicular line. [interactive]

W
W⊥

The orthogonal complement of a line in R3 is the
perpendicular plane. [interactive]

W⊥
W

The orthogonal complement of a plane in R3 is the
perpendicular line. [interactive]

W
W⊥

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/spans.html?v1=2,3&captions=orthog
http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/spans.html?v1=.3,0,1&captions=orthog&range=3
http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/spans.html?v1=.957,0,-.287&v2=0,1,0&captions=orthog&range=3


Poll

Let W be a 2-plane in R4. How would you describe W⊥?

A. The zero space {0}.
B. A line in R4.

C. A plane in R4.

D. A 3-dimensional space in R4.

E. All of R4.

Poll

For example, if W is the xy -plane, then W⊥ is the xy -plane:
x
y
0
0

 ·


0
0
z
w

 = 0.



Orthogonal Complements
Basic properties

Let W be a subspace of Rn.

Facts:

1. W⊥ is also a subspace of Rn

2. (W⊥)⊥ = W

3. dimW + dimW⊥ = n

4. If W = Span{v1, v2, . . . , vm}, then

W⊥ = all vectors orthogonal to each v1, v2, . . . , vm

=
{
x in Rn | x · vi = 0 for all i = 1, 2, . . . ,m

}
= Nul


— vT

1 —
— vT

2 —...
— vT

m —

 .

Let’s check 1.
I Is 0 in W⊥? Yes: 0 · w = 0 for any w in W .
I Suppose x , y are in W⊥. So x · w = 0 and y · w = 0 for all w in W . Then

(x + y) · w = x · w + y · w = 0 + 0 = 0 for all w in W . So x + y is also in W⊥.
I Suppose x is in W⊥. So x · w = 0 for all w in W . If c is a scalar, then

(cx) · w = c(x · 0) = c(0) = 0 for any w in W . So cx is in W⊥.



Orthogonal Complements
Computation

Problem: if W = Span


 1

1
−1

 ,

1
1
1

, compute W⊥.

By property 4, we have to find the null space of the matrix whose rows are(
1 1 −1

)
and

(
1 1 1

)
, which we did before:

Nul

(
1 1 −1
1 1 1

)
= Span


−1

1
0

 .

[interactive]

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —



http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/spans.html?v1=1,1,-1&v2=1,1,1&range=3&captions=orthog


Orthogonal Complements
Row space, column space, null space

Definition
The row space of an m × n matrix A is the span of the rows of A. It is
denoted RowA. Equivalently, it is the column span of AT :

RowA = ColAT .

It is a subspace of Rn.

We showed before that if A has rows vT
1 , v

T
2 , . . . , v

T
m , then

Span{v1, v2, . . . , vm}⊥ = NulA.

Hence we have shown:

Fact: (RowA)⊥ = NulA.

Replacing A by AT , and remembering RowAT = ColA:

Fact: (ColA)⊥ = NulAT .

Using property 2 and taking the orthogonal complements of both sides, we get:

Fact: (NulA)⊥ = RowA and ColA = (NulAT )⊥.



Orthogonal Complements
Reference sheet

Orthogonal Complements of Most of the Subspaces We’ve Seen

For any vectors v1, v2, . . . , vm:

Span{v1, v2, . . . , vm}⊥ = Nul


— vT

1 —
— vT

2 —...
— vT

m —


For any matrix A:

RowA = ColAT

and

(RowA)⊥ = NulA RowA = (NulA)⊥

(ColA)⊥ = NulAT ColA = (NulAT )⊥


