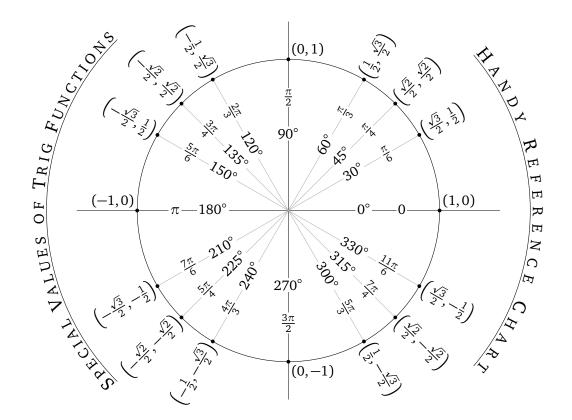
MATH 1553-A MIDTERM EXAMINATION 3

Name GT Email @gatec	ı.edu
----------------------	-------

Please **read all instructions** carefully before beginning.

- Please leave your GT ID card on your desk until your TA scans your exam.
- All graded work for Problem n must appear on the page containing Problem n or the page labeled "Scratch page for Problem n".
- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!



[Scratch page for Problem 1]

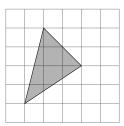
In this problem, if the statement is always true, circle **T**; otherwise, circle **F**. *All matrices are assumed to have real entries*.

- a) T F An upper-triangular matrix can have a complex (non-real) eigenvalue.
- b) **T F** If an $n \times n$ matrix A has a zero eigenvalue, then rank(A) < n.
- c) **T F** Every upper-triangular matrix is diagonalizable.
- d) **T F** If *A* is an $n \times n$ matrix and *c* is a scalar, then $\det(cA) = c \det(A)$.
- e) \mathbf{T} \mathbf{F} $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ is similar to $\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$.

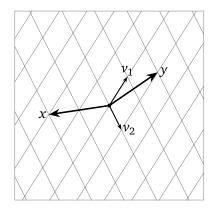
[Scratch page for Problem 2]

Short answer problems: you need not explain your work.

a) What is the area of the triangle in the picture?



- **b)** Give an example of a 2×2 matrix that is neither invertible nor diagonalizable.
- **c)** Give an example of two 2×2 matrices that have the same eigenvalues but are not similar.
- **d)** Suppose that $A = P \begin{pmatrix} 1/2 & 0 \\ 0 & -1 \end{pmatrix} P^{-1}$, where P has columns v_1 and v_2 . Given x and y in the picture below, draw the vectors Ax and Ay.



e) With respect to the picture in (d), find the \mathcal{B} -coordinates of an eigenvector of A with eigenvalue 1/2, where $\mathcal{B} = \{v_1, v_2\}$.

[Scratch page for Problem 3]

Problem 3. [2 points each]

Consider the matrix

$$A = \begin{pmatrix} -2\sqrt{3} - 1 & 5\\ -1 & -2\sqrt{3} + 1 \end{pmatrix}$$

- **a)** Find both complex eigenvalues of *A*.
- b) Find an eigenvector corresponding to each eigenvalue.
- **c)** Find an invertible matrix P and a rotation-scale matrix C such that $A = PCP^{-1}$.
- **d)** By what angle does *C* rotate?
- **e)** Successive multiplication by *A*:

spirals in rotates around an ellipse spirals out (circle the best option).

[Scratch page for Problem 4]

Problem 4. [10 points]

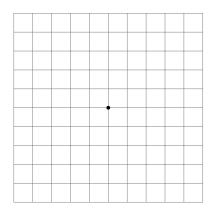
For which value(s) of a is $\lambda = 1$ an eigenvector of this matrix?

$$A = \begin{pmatrix} 3 & -1 & 0 & a \\ a & 2 & 0 & 4 \\ 2 & 0 & 1 & -2 \\ 13 & a & -2 & -7 \end{pmatrix}$$

[Scratch page for Problem 5]

Let
$$A = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix}$$
.

a) Draw all eigenspaces of A, and label them with the corresponding eigenvalue:



b) Compute A^n , where $n \ge 1$ is any whole number. Your answer should be a single 2×2 matrix whose entries are formulas involving n.

