MATH 1553-C MIDTERM EXAMINATION 3

h.edu

Please read all instructions carefully before beginning.

- Please leave your GT ID card on your desk until your TA scans your exam.
- All graded work for Problem *n* must appear on the page containing Problem *n* or the page labeled "Scratch page for Problem *n*".
- Each problem is worth 10 points. The maximum score on this exam is 50 points.
- You have 50 minutes to complete this exam.
- There are no aids of any kind (notes, text, etc.) allowed.
- Please show your work.
- You may cite any theorem proved in class or in the sections we covered in the text.
- Good luck!

[Scratch page for Problem 1]

In this problem, if the statement is always true, circle T ; otherwise, circle F .				
			All matrices are assumed to have real entries.	
a)	Т	F	A 5 \times 5 matrix has a real eigenvector.	
b)	Т	F	Every diagonalizable $n \times n$ matrix has n distinct eigenvalues.	
c)	Т	F	If an $n \times n$ matrix A has a zero eigenvalue, then Nul(A) $\neq \{0\}$.	
d)	Т	F	If <i>A</i> is an $n \times n$ matrix, then det($-A$) = $-$ det(<i>A</i>).	
e)	Т	F	$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ is similar to $\begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$.	

[Scratch page for Problem 2]

[Scratch page for Problem 3]

[Scratch page for Problem 4]

Problem 4.

[10 points]

For which value(s) of a is $\lambda = 2$ an eigenvector of this matrix? $A = \begin{pmatrix} 3 & -1 & 0 & a \\ a & 3 & 0 & 4 \\ 2 & 0 & 2 & -2 \\ 13 & a & -2 & -7 \end{pmatrix}$ [Scratch page for Problem 5]

Problem 5.

[5 points each]

Let
$$A = \begin{pmatrix} 2 & 0 \\ -3 & 1 \end{pmatrix}$$
.

a) Draw all eigenspaces of *A*, and label them with the corresponding eigenvalue:

b) Compute A^n , where $n \ge 1$ is any whole number. Your answer should be a single 2×2 matrix whose entries are formulas involving *n*.

[Ungraded scratch page]