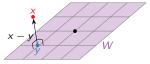
- You already have your midterms!
 - Course grades will be curved at the end of the semester. The percentage of A's, B's, and C's to be awarded depends on many factors, and will not be determined until all grades are in.
 - Individual exam grades are not curved.
- ▶ WeBWorK 6.1, 6.2, 6.3 due the Wednesday after Thanksgiving.
- Reading day: Math is 1–3pm on December 6 in Clough 144 and 152. I'll be there for part of it.
- My office is Skiles 244. Rabinoffice hours are Monday, 1–3pm and Tuesday, 9–11am.

Section 6.2/6.3

Orthogonal Projections

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.



Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W.

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the *orthogonal complement* W^{\perp} .

Recall: If W is a subspace of \mathbb{R}^n , its orthogonal complement is

 $W^{\perp} = \{ v \text{ in } \mathbf{R}^n \mid v \text{ is perpendicular to every vector in } W \}$

Theorem

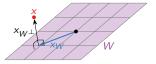
Every vector x in \mathbf{R}^n can be written as

 $x = x_W + x_{W^{\perp}}$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the closest vector to x on W. [interactive 1] [interactive 2]



Orthogonal Decomposition

Justification

Theorem

Every vector x in \mathbf{R}^n can be written as

 $x = x_W + x_{W^{\perp}}$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

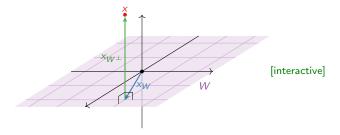
Why?

Orthogonal Decomposition Example

Let W be the xy-plane in \mathbb{R}^3 . Then W^{\perp} is the z-axis.

$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \implies x_W = \qquad \qquad x_{W^{\perp}} =$$
$$x = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \implies x_W = \qquad \qquad x_{W^{\perp}} =$$

This is just decomposing a vector into a "horizontal" component (in the xy-plane) and a "vertical" component (on the *z*-axis).



Problem: Given x and W, how do you compute the decomposition $x = x_W + x_{W^{\perp}}$?

Observation: It is enough to compute x_W , because $x_{W^{\perp}} = x - x_W$.

First we need to discuss orthogonal sets.

Definition

A set of *nonzero* vectors is **orthogonal** if each pair of vectors is orthogonal. It is **orthonormal** if, in addition, each vector is a unit vector.

Lemma

An orthogonal set of vectors is linearly independent. Hence it is a basis for its span.

Example:
$$\mathcal{B} = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is an orthogonal set. Check:

Example: $\mathcal{B} = \{e_1, e_2, e_3\}$ is an orthogonal set. Check:

Example: Let $x = {a \choose b}$ be a nonzero vector, and let $y = {-b \choose a}$. Then $\{x, y\}$ is an orthogonal set:

Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \ldots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} + \dots + \frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}.$$

This is a vector in W because it is in Span $\{u_1, u_2, \ldots, u_m\}$.

Theorem

Let W be a subspace of \mathbf{R}^n , and let x be a vector in \mathbf{R}^n . Then

 $(x_W = \operatorname{proj}_W(x) \quad \text{and} \quad x_{W^{\perp}} = x - \operatorname{proj}_W(x).$

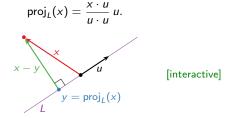
In particular, $proj_W(x)$ is the closest point to x in W.

Why?

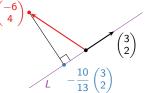
Orthogonal Projection onto a Line

The formula for orthogonal projections is simple when W is a *line*.

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The orthogonal projection of x onto L is the point



Example: Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line *L* spanned by $u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

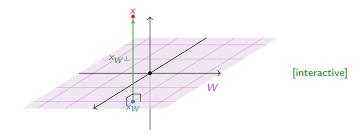


Orthogonal Projection onto a Plane

Easy example

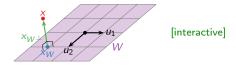
What is the projection of
$$x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 onto the *xy*-plane?

So this is the same projection as before.



More complicated example

What is the projection of
$$x = \begin{pmatrix} -1.1 \\ 1.4 \\ 1.45 \end{pmatrix}$$
 onto $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1.1 \\ -.2 \end{pmatrix} \right\}$?



First we restate the property we've been using all along.

Let x be a vector and let $x = x_W + x_{W^{\perp}}$ be its orthogonal decomposition with respect to a subspace W. The following vectors are the same:

- ► X_W
- $\operatorname{proj}_W(x)$
- ▶ The closest vector to *x* on *W*

We can think of orthogonal projection as a transformation:

$$\operatorname{proj}_W : \mathbf{R}^n \longrightarrow \mathbf{R}^n \qquad x \mapsto \operatorname{proj}_W(x).$$

Theorem

Let W be a subspace of \mathbf{R}^n .

- 1. $proj_W$ is a *linear* transformation.
- 2. For every x in W, we have $\operatorname{proj}_W(x) = x$.
- 3. For every x in W^{\perp} , we have $\operatorname{proj}_{W}(x) = 0$.
- 4. The range of proj_W is W and the null space of proj_W is W^{\perp} .

Poll

Matrices

What is the matrix for $\operatorname{proj}_W : \mathbf{R}^3 \to \mathbf{R}^3$, where $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}?$ Let W be an m-dimensional subspace of \mathbb{R}^n , let $\operatorname{proj}_W \colon \mathbb{R}^n \to W$ be the projection, and let A be the matrix for proj_L .

Fact 1: A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix with m ones and n - m zeros on the diagonal.

Fact 2: $A^2 = A$.

Coordinates with respect to Orthogonal Bases

Let W be a subspace with orthogonal basis $\mathcal{B} = \{u_1, u_2, \ldots, u_m\}$.

For x in W we have $\operatorname{proj}_W(x) = x$, so

$$x = \operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} + \dots + \frac{x \cdot u_{n}}{u_{n} \cdot u_{n}} u_{n}.$$

This makes it easy to compute the \mathcal{B} -coordinates of x.

Corollary

Let W be a subspace with orthogonal basis $\mathcal{B} = \{u_1, u_2, \ldots, u_m\}$. Then

$$[x]_{\mathcal{B}} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \ldots, \frac{x \cdot u_m}{u_m \cdot u_m}\right).$$

[interactive]

Coordinates with respect to Orthogonal Bases Example

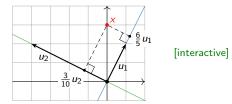
Problem: Find the \mathcal{B} -coordinates of $x = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$, where

$$\mathcal{B} = \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} -4 \\ 2 \end{pmatrix} \right\}.$$

Old way:

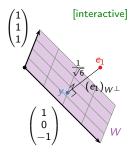
$$\begin{pmatrix} 1 & -4 & | & 0 \\ 2 & 2 & | & 3 \end{pmatrix} \xrightarrow{\text{rref}} \begin{pmatrix} 1 & 0 & | & 6/5 \\ 0 & 1 & | & 6/20 \end{pmatrix} \implies [x]_{\mathcal{B}} = \begin{pmatrix} 6/5 \\ 6/20 \end{pmatrix}.$$

New way: note \mathcal{B} is an *orthogonal* basis.



Distance to a subspace

What is the distance from
$$e_1$$
 to $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$?



Summary

Let W be a subspace of \mathbf{R}^n .

• Any vector x in \mathbf{R}^n can be written in a unique way as

$$x = x_W + x_{W^{\perp}}$$

for x_W in W and $x_{W^{\perp}}$ in W^{\perp} . This is called its **orthogonal decomposition.**

- The vector x_W is the closest point to x in W: it is the best approximation.
- The *distance* from x to W is $||x_{W^{\perp}}||$.
- ▶ If you have an *orthogonal* basis $\{u_1, u_2, ..., u_m\}$ for *W*, then

$$x_W = \text{proj}_W(x) = \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_n}{u_n \cdot u_n} u_n.$$

Hence $x_{W^{\perp}} = x - \operatorname{proj}_{W}(x)$.

▶ If you have an *orthogonal* basis $\{u_1, u_2, ..., u_m\}$ for *W*, then

$$[x]_{\mathcal{B}} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{x \cdot u_m}{u_m \cdot u_m}\right)$$

- We can think of $\operatorname{proj}_W : \mathbb{R}^n \to \mathbb{R}^n$ as a linear transformation. Its null space is W^{\perp} , and its range is W.
- The matrix A for proj_W is diagonalizable with eigenvalues 0 and 1. It is *idempotent*: $A^2 = A$.