
Announcements
Monday, November 27

I WeBWorK 6.1, 6.2, 6.3 are due Wednesday at 11:59pm.

I WeBWorK 6.4, 6.5 are posted and will be covered on the final, but they
are not graded.

I No quiz on Friday! But this is the only recitation on chapter 6.

I My office is Skiles 244. Rabinoffice hours are Monday, 1–3pm and
Tuesday, 9–11am.



Section 6.4

The Gram–Schmidt Process



Motivation: Best Approximation

Suppose you measure a data point x which you know for theoretical reasons
must lie on a subspace W .

Wy

x

x − y

Due to measurement error, though, the measured x is not actually in W . Best
approximation: y is the closest point to x on W .

How do you know that y is the closest point? The vector from y to x is
orthogonal to W : it is in the orthogonal complement W⊥.

Note x = y + (x − y), where y is in W and x − y is in W⊥. Last time we
called this the orthogonal decomposition of x :

x = xW + xW⊥ xW = y xW⊥ = x − y .



Orthogonal Decomposition
Review

Recall: If W is a subspace of Rn, its orthogonal complement is

W⊥ =
{
v in Rn | v is perpendicular to every vector in W

}
Theorem
Every vector x in Rn can be written as

x = xW + xW⊥

for unique vectors xW in W and xW⊥ in W⊥.

The equation x = xW + xW⊥ is called the orthogonal decomposition of x
(with respect to W ).

The vector xW is the closest vector to x on W .

[interactive 1] [interactive 2]
WxW

x

xW⊥

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed
http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=0,1.1,.2&vec=-1.1,2,1.5&range=3&mode=decomp&closed&subname=W


Orthogonal Projections
Review

How do you compute xW ? (Note xW⊥ = x − xW .)

Recall: a set of nonzero vectors {u1, u2, . . . , um} is orthogonal if ui · uj = 0
when i 6= j : each vector is perpendicular to the others.

Definition
Let W be a subspace of Rn, and let {u1, u2, . . . , um} be an orthogonal basis for
W . The orthogonal projection of a vector x onto W is

projW (x)
def
=

m∑
i=1

x · ui
ui · ui

ui =
x · u1
u1 · u1

u1 +
x · u2
u2 · u2

u2 + · · ·+ x · un
un · un

un.

[interactive]

Let x be a vector and let x = xW +xW⊥ be its orthogonal decomposition
with respect to a subspace W . The following vectors are the same:

I xW

I projW (x)

I The closest vector to x on W

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&vec=-1.1,1.4,1.45&range=3&closed


Orthogonal Projection onto a Line
Review

The formula for orthogonal projections is simple when W is a line.

Let L = Span{u} be a line in Rn, and let x be in Rn. The orthogonal projection
of x onto L is the point

projL(x) =
x · u
u · u u.

L

u

x

y = projL(x)

x − y
[interactive]

Example: Compute the orthogonal projection of x =
(−6

4

)
onto the line L

spanned by u =
(
3
2

)
.

y = projL(x) =
x · u
u · u u =

−18 + 8

9 + 4

(
3
2

)
= −10

13

(
3
2

)
.

L

(
3
2

)
(
−6
4

)

−
10

13

(
3
2

)

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=3,2&vec=-6,4&labels=u&closed


Orthogonal Projections
Properties

We can think of orthogonal projection as a transformation:

projW : Rn −→ Rn x 7→ projW (x).

Theorem
Let W be a subspace of Rn.

1. projW is a linear transformation.

2. For every x in W , we have projW (x) = x .

3. For every x in W⊥, we have projW (x) = 0.

4. The range of projW is W and the null space of projW is W⊥.

Let W be a subspace with orthogonal basis B = {u1, u2, . . . , um}.

For x in W we have projW (x) = x , so

x = projW (x) =
m∑
i=1

x · ui
ui · ui

ui =
x · u1
u1 · u1

u1 +
x · u2
u2 · u2

u2 + · · ·+ x · un
un · un

un

=⇒ [x ]B =

(
x · u1
u1 · u1

,
x · u2
u2 · u2

, . . . ,
x · um
um · um

)
. [interactive]

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=1,0,0&u2=0,1.1,-.2&range=3&mode=basis&vec=1.3,1.5,0&closed


A Non-Orthogonal Basis

Important: Orthogonal projections require an orthogonal basis!

Non-Example: Consider the basis B = {v1, v2} of R2, where

v1 =

(
2
−1/2

)
v2 =

(
1
2

)
.

This is not orthogonal:
(

2
−1/2

)
·
(
1
2

)
= 1 6= 0.

Let’s try to compute x = projR2(x) for x =
(
1
1

)
using the basis {v1, v2}:

x = projR2(x) =

x · v1
v1 · v1

v1 +
x · v2
v2 · v2

v2 =
3/2

17/4

(
2
−1/2

)
+

3

5

(
1
2

)
=

(
111/85
87/85

)
%

This does not work!

[interactive] (compare [orthogonal basis])

v1

v2

x

(111/85
87/85

)

http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=2,-.5&u2=1,2&vec=1,1&range=3&mode=badbasis&labels=v1,v2&closed
http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=2,-1&u2=1,2&vec=1,1&range=3&mode=basis&closed


Recap

All of the procedures we learned in §§6.2–6.3 require an orthogonal basis
{u1, u2, . . . , um}.

I Finding the orthogonal projection of a vector x onto the span W of
u1, u2, . . . , um:

projW (x) =
m∑
i=1

x · ui
ui · ui

ui .

I Finding the orthogonal decomposition of x :

x = projW (x) + xW⊥ .

I Finding the B-coordinates of x :

[x ]B =

(
x · u1
u1 · u1

,
x · u2
u2 · u2

, . . . ,
x · um
um · um

)
.

Problem: What if your basis isn’t orthogonal?

Solution: The Gram–Schmidt process: take any basis and make it orthogonal.



The Gram–Schmidt Process
Procedure

The Gram–Schmidt Process
Let {v1, v2, . . . , vm} be a basis for a subspace W of Rn. Define:

1. u1 = v1

2. u2 = v2 − projSpan{u1}(v2) = v2 −
v2 · u1
u1 · u1

u1

3. u3 = v3 − projSpan{u1,u2}(v3) = v3 −
v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2

...

m. um = vm − projSpan{u1,u2,...,um−1}(vm) = vm −
m−1∑
i=1

vm · ui
ui · ui

ui

Then {u1, u2, . . . , um} is an orthogonal basis for the same subspace W .

Remark
In fact, for every i between 1 and n, the set {u1, u2, . . . , ui} is an orthogonal
basis for Span{v1, v2, . . . , vi}.



The Gram–Schmidt Process
Two vectors

Find an orthogonal basis {u1, u2} for W = Span{v1, v2}, where

v1 =

1
1
0

 and v2 =

1
1
1

 .

Run Gram–Schmidt:

1. u1 = v1 2. u2 = v2 −
v2 · u1
u1 · u1

u1 =

1
1
1

− 2

2

1
1
0

 =

0
0
1

 .

Why does this work?

I First we take u1 = v1.

I Now we’re sad because u1 · v2 6= 0, so we
can’t take u2 = v2.

I Fix: let L1 = Span{u1}, and let
u2 = (v2)L⊥1

= v2 − projL1(v2).

I By construction, u1 · u2 = 0, because
L1 ⊥ u2.

L1

W

v1 = u1

v2 u2 = (v2)L⊥1

Important: Span{u1, u2} = Span{v1, v2} = W : this is an orthogonal basis for
the same subspace.



The Gram–Schmidt Process
Three vectors

Find an orthogonal basis {u1, u2, u3} for W = Span{v1, v2, v3} = R3, where

v1 =

1
1
0

 v2 =

1
1
1

 v3 =

3
1
1

 .

Run Gram–Schmidt:

1. u1 = v1

2. u2 = v2 −
v2 · u1
u1 · u1

u1 =

1
1
1

− 2

2

1
1
0

 =

0
0
1


3. u3 = v3 −

v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2

=

3
1
1

− 4

2

1
1
0

− 1

1

0
0
1

 =

 1
−1
0



Important: Span{u1, u2, u3} = Span{v1, v2, v3} = W : this is an orthogonal
basis for the same subspace.



The Gram–Schmidt Process
Three vectors, continued

v1 =

1
1
0

 , v2 =

1
1
1

 , v3 =

3
1
1

 G–S
u1 =

1
1
0

 , u2 =

0
0
1

 , u3 =

 1
−1
0



Why does this work?

I Once we have u1 and u2, then we’re sad
because v3 is not orthogonal to u1 and u2.

I Fix: let W2 = Span{u1, u2}, and let
u3 = (v3)W⊥2

= v3 − projW3
(u3).

I By construction, u1 · u3 = 0 = u2 · u3
because W2 ⊥ u3.

Check:
u1 · u2 = 0"
u1 · u3 = 0"
u2 · u3 = 0"

x

y

z

W2

L1

u1

u2

v3

u3

pro
jW2

(v3
)



The Gram–Schmidt Process
Three vectors in R4

Find an orthogonal basis {u1, u2, u3} for W = Span{v1, v2, v3}, where

v1 =


1
1
1
1

 v2 =


−1

4
4
−1

 v3 =


4
−2
−2

0

 .

Run Gram–Schmidt:

1. u1 = v1

2. u2 = v2 −
v2 · u1
u1 · u1

u1 =


−1

4
4
−1

− 6

4


1
1
1
1

 =


−5/2

5/2
5/2
−5/2


3. u3 = v3 −

v3 · u1
u1 · u1

u1 −
v3 · u2
u2 · u2

u2

=


4
−2
−2

0

− 0

24


1
1
1
1

− −20

25


−5/2

5/2
5/2
−5/2

 =


2
0
0
−2





Poll

What happens if you try to run Gram–Schmidt on a linearly
dependent set of vectors {v1, v2, . . . , vm}?

A. You get an inconsistent equation.

B. For some i you get ui = ui−1.

C. For some i you get ui = 0.

D. You create a rift in the space-time continuum.

Poll

If {v1, v2, . . . , vm} is linearly dependent, then some vi is in
Span{v1, v2, . . . , vi−1} = Span{u1, u2, . . . , ui−1}.

This means
vi = projSpan{u1,u2,...,ui−1}(vi )

=⇒ ui = vi − projSpan{u1,u2,...,ui−1}(vi ) = 0.

In this case, you can simply discard ui and vi and continue: so Gram–Schmidt
produces an orthogonal basis from any spanning set!



Summary

I We like orthogonal bases because they let us compute orthogonal
projections.

I The Gram–Schmidt process turns an arbitrary basis into an orthogonal
basis.


