- \blacktriangleright WeBWorK 6.1, 6.2, 6.3 are due Wednesday at 11:59pm.
- \triangleright WeBWorK 6.4, 6.5 are posted and will be covered on the final, but they are not graded.
- \triangleright No quiz on Friday! But this is the only recitation on chapter 6.
- \triangleright My office is Skiles 244. Rabinoffice hours are Monday, 1-3pm and Tuesday, 9–11am.

Section 6.4

The Gram–Schmidt Process

Motivation: Best Approximation

Suppose you measure a data point x which you know for theoretical reasons must lie on a subspace W.

Due to measurement error, though, the measured x is not actually in W. Best approximation: y is the *closest* point to x on W .

How do you know that y is the closest point? The vector from y to x is orthogonal to W: it is in the orthogonal complement W^{\perp} .

Note $x = y + (x - y)$, where y is in W and $x - y$ is in W^{\perp} . Last time we called this the orthogonal decomposition of x :

$$
x = x_W + x_{W^{\perp}} \qquad x_W = y \qquad x_{W^{\perp}} = x - y.
$$

Orthogonal Decomposition

Review

Recall: If W is a subspace of \mathbb{R}^n , its orthogonal complement is

 $W^{\perp} = \{v \text{ in } \mathbb{R}^n \mid v \text{ is perpendicular to every vector in } W\}$

Theorem

Every vector x in \mathbb{R}^n can be written as

$$
x = x_W + x_{W^\perp}
$$

for unique vectors x_W in W and $x_{W^{\perp}}$ in W^{\perp} .

The equation $x = x_W + x_{W^{\perp}}$ is called the **orthogonal decomposition** of x (with respect to W).

The vector x_W is the closest vector to x on W.

 $[interactive 1]$ $[interactive 2]$

Orthogonal Projections

Review

How do you compute x_W ? (Note $x_{W^{\perp}} = x - x_W$.)

Recall: a set of nonzero vectors $\{u_1, u_2, \ldots, u_m\}$ is **orthogonal** if $u_i \cdot u_j = 0$ when $i \neq j$: each vector is perpendicular to the others.

Definition

Let W be a subspace of \mathbf{R}^n , and let $\{u_1, u_2, \ldots, u_m\}$ be an orthogonal basis for W. The **orthogonal projection** of a vector x onto W is

$$
\boxed{\text{proj}_{W}(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{x \cdot u_n}{u_n \cdot u_n} u_n}.
$$
\n[interactive]

Let x be a vector and let $x = x_W + x_{W\perp}$ be its orthogonal decomposition with respect to a subspace W . The following vectors are the same:

- \blacktriangleright X_W
- \blacktriangleright proj_{W} (x)
- \blacktriangleright The closest vector to x on W

Orthogonal Projection onto a Line **Review**

The formula for orthogonal projections is simple when W is a line.

Let $L = \text{Span}\{u\}$ be a line in \mathbb{R}^n , and let x be in \mathbb{R}^n . The orthogonal projection of x onto L is the point

Example: Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line L spanned by $u = \binom{3}{2}$.

Orthogonal Projections **Properties**

We can think of orthogonal projection as a *transformation*:

$$
\operatorname{\mathsf{proj}}_W\colon \mathbf{R}^n\longrightarrow \mathbf{R}^n\qquad x\mapsto \operatorname{\mathsf{proj}}_W(x).
$$

Theorem

Let W be a subspace of \mathbb{R}^n .

- 1. proj_W is a *linear* transformation.
- 2. For every x in W, we have $proj_{W}(x) = x$.
- 3. For every x in W^{\perp} , we have proj $W(x) = 0$.
- 4. The range of proj_W is W and the null space of proj_W is W^{\perp} .

Let W be a subspace with orthogonal basis $\mathcal{B} = \{u_1, u_2, \dots, u_m\}.$

For x in W we have $proj_W(x) = x$, so

$$
x = \text{proj}_W(x) = \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_n}{u_n \cdot u_n} u_n
$$

\n
$$
\implies [x]_B = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \frac{x \cdot u_2}{u_2 \cdot u_2}, \dots, \frac{x \cdot u_m}{u_m \cdot u_m}\right). \quad [\text{interactive}]
$$

A Non-Orthogonal Basis

Important: Orthogonal projections require an orthogonal basis!

Non-Example: Consider the basis $\mathcal{B} = \{v_1, v_2\}$ of \mathbb{R}^2 , where

$$
v_1=\begin{pmatrix}2\\-1/2\end{pmatrix}\quad v_2=\begin{pmatrix}1\\2\end{pmatrix}.
$$

This is not orthogonal: $\begin{pmatrix} 2 \\ -1/2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = 1 \neq 0$.

Let's try to compute $x = \text{proj}_{\mathbf{R}^2}(x)$ for $x = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ using the basis $\{v_1, v_2\}$:

 $x = \text{proj}_{\mathbf{p}2}(x) =$

This does not work!

[\[interactive\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=2,-.5&u2=1,2&vec=1,1&range=3&mode=badbasis&labels=v1,v2&closed) (compare [\[orthogonal basis\]](http://people.math.gatech.edu/~jrabinoff6/1718F-1553/demos/projection.html?u1=2,-1&u2=1,2&vec=1,1&range=3&mode=basis&closed))

Recap

All of the procedures we learned in $\S66.2-6.3$ require an *orthogonal* basis $\{u_1, u_2, \ldots, u_m\}.$

 \triangleright Finding the orthogonal projection of a vector x onto the span W of u_1, u_2, \ldots, u_m :

$$
\operatorname{proj}_W(x) = \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i.
$$

 \blacktriangleright Finding the orthogonal decomposition of x:

$$
x = \text{proj}_W(x) + x_{W^{\perp}}.
$$

 \blacktriangleright Finding the *B*-coordinates of x:

$$
[x]_{\mathcal{B}}=\left(\frac{x\cdot u_1}{u_1\cdot u_1},\ \frac{x\cdot u_2}{u_2\cdot u_2},\ \ldots,\ \frac{x\cdot u_m}{u_m\cdot u_m}\right).
$$

Problem: What if your basis isn't orthogonal?

Solution: The Gram–Schmidt process: take any basis and make it orthogonal.

Procedure

The Gram–Schmidt Process Let $\{v_1, v_2, \ldots, v_m\}$ be a basis for a subspace W of \mathbf{R}^n . Define: 1. $u_1 = v_1$ 2. $u_2 = v_2 - \text{proj}_{\text{Span}\{u_1\}}(v_2) = v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_2}$ $\frac{u_2 - u_1}{u_1 + u_1} u_1$ 3. $u_3 = v_3 - \text{proj}_{\text{Span} \{u_1, u_2\}}(v_3)$ (v_3) = $v_3 - \frac{v_3 \cdot u_1}{u_3 + u_2}$ $\frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2}$ $\frac{u_3}{u_2 \cdot u_2} u_2$. . . m. $u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, ..., u_{m-1}\}}(v_m) = v_m \sum^{m-1}$ $i=1$ $v_m \cdot u_i$ $\frac{u_i}{u_i \cdot u_i} u_i$

Then $\{u_1, u_2, \ldots, u_m\}$ is an orthogonal basis for the same subspace W.

Remark

In fact, for every *i* between 1 and *n*, the set $\{u_1, u_2, \ldots, u_i\}$ is an orthogonal basis for $\text{Span}\{v_1, v_2, \ldots, v_i\}.$

Two vectors

Find an orthogonal basis $\{u_1, u_2\}$ for $W = \text{Span}\{v_1, v_2\}$, where

$$
v_1=\begin{pmatrix}1\\1\\0\end{pmatrix}\quad\text{ and }\quad v_2=\begin{pmatrix}1\\1\\1\end{pmatrix}.
$$

Important: $\text{Span}\{u_1, u_2\} = \text{Span}\{v_1, v_2\} = W$: this is an orthogonal basis for the same subspace.

Three vectors

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \mathsf{Span}\{ \mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_3 \} = \mathsf{R}^3$, where

$$
v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}.
$$

Important: $\text{Span}\{u_1, u_2, u_3\} = \text{Span}\{v_1, v_2, v_3\} = W$: this is an orthogonal basis for the same subspace.

Three vectors, continued

$$
v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{G-S}} u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}
$$

\n
$$
w_2
$$

\n
$$
w_3
$$

\n
$$
w_4
$$

\n
$$
w_5
$$

\n
$$
w_1
$$

\n
$$
w_3
$$

\n
$$
w_4
$$

\n
$$
w_5
$$

\n
$$
w_1
$$

\n
$$
w_3
$$

Three vectors in R^4

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\}$, where

$$
v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad v_2 = \begin{pmatrix} -1 \\ 4 \\ 4 \\ -1 \end{pmatrix} \qquad v_3 = \begin{pmatrix} 4 \\ -2 \\ -2 \\ 0 \end{pmatrix}.
$$

Poll

Summary

- \triangleright We like orthogonal bases because they let us compute orthogonal projections.
- \triangleright The Gram–Schmidt process turns an arbitrary basis into an orthogonal basis.