- ► Final exam: 6–8:50pm in Clough 152
 - Cumulative final covers the whole class pretty evenly.
 - About twice as long as a midterm.
 - Common for all 1553 sections; written collaboratively.
- Studying resources for the final:
 - Practice final.
 - Extra general practice problems posted on the website.
 - Problems on midterms and practice midterms.
 - Reference sheet.
 - Early draft of Dan's and my textbook.
 - Problems in Lav.
 - ▶ Reading day: is 1–3pm on December 6 in Clough 144 and 152.
 - Double Rabinoffice hours:

Monday, 12-2pm; Tuesday, 9-11am; Thursday, 10-12pm; Friday, 2-4pm.

- Please fill out your CIOS survey!
 - ▶ 80% response rate by 11:59pm on Thursday **** extra dropped quiz

Review for the Final Exam

Selected Topics

Orthogonal Sets

Definition

A set of *nonzero* vectors is **orthogonal** if each pair of vectors is orthogonal. It is **orthonormal** if, in addition, each vector is a unit vector.

Example:
$$\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 is not orthogonal.

Example:
$$\mathcal{B}_2 = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is orthogonal but not orthonormal.

Example:
$$\mathcal{B}_3 = \left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \ \frac{1}{\sqrt{6}} \begin{pmatrix} 1\\-2\\1 \end{pmatrix}, \ \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix} \right\}$$
 is orthonormal.

To go from an orthogonal set $\{u_1, u_2, \dots, u_m\}$ to an orthonormal set, replace each u_i with $u_i/\|u_i\|$.

Theorem

An orthogonal set is linearly independent. In particular, it is a basis for its span.

Orthogonal Projection

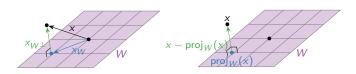
Let W be a subspace of \mathbb{R}^n , and let $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\text{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2} + \cdots + \frac{x \cdot u_{m}}{u_{m} \cdot u_{m}} u_{m}.$$

This is the closest vector to x that lies on W. In other words, the difference $x - \operatorname{proj}_W(x)$ is perpendicular to W: it is in W^{\perp} . Notation:

$$\left(x_W = \operatorname{proj}_W(x) \qquad x_{W^{\perp}} = x - \operatorname{proj}_W(x).\right)$$

So x_W is in W, $x_{W^{\perp}}$ is in W^{\perp} , and $x = x_W + x_{W^{\perp}}$.



Orthogonal Projection

Special case: If x is in W, then $x = \text{proj}_W(x)$, so

$$x = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$

In other words, the \mathcal{B} -coordinates of x are

$$\left(\frac{x\cdot u_1}{u_1\cdot u_1}, \frac{x\cdot u_2}{u_1\cdot u_2}, \ldots, \frac{x\cdot u_m}{u_1\cdot u_m}\right),\,$$

where $\mathcal{B} = \{u_1, u_2, \dots, u_m\}$, an orthogonal basis for W.

Special case: If W=L is a line, then $L=\operatorname{Span}\{u\}$ for some nonzero vector u, and

$$\operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u$$

$$x_{L} = \operatorname{proj}_{L}(x)$$

Let W be a subspace of \mathbb{R}^n .

Theorem

The orthogonal projection proj_W is a *linear* transformation from \mathbb{R}^n to \mathbb{R}^n . Its range is W.

If A is the matrix for proj_W , then $A^2 = A$ because projecting twice is the same as $\operatorname{projecting}$ once: $\operatorname{proj}_W \circ \operatorname{proj}_W = \operatorname{proj}_W$.

Theorem

The only eigenvalues of A are 1 and 0.

Why?

$$Av = \lambda v \implies A^2v = A(Av) = A(\lambda v) = \lambda(Av) = \lambda^2 v.$$

So if λ is an eigenvalue of A, then λ^2 is an eigenvalue of A^2 . But $A^2=A$, so $\lambda^2=\lambda$, and hence $\lambda=0$ or 1.

The 1-eigenspace of A is W, and the 0-eigenspace is W^{\perp} .

The Gram-Schmidt Process

The Gram-Schmidt Process

Let $\{v_1, v_2, \dots, v_m\}$ be a basis for a subspace W of \mathbb{R}^n . Define:

1.
$$u_1 = v_1$$

2.
$$u_2 = v_2 - \text{proj}_{\mathsf{Span}\{u_1\}}(v_2)$$
 $= v_2 - \frac{v_2 \cdot u_1}{u_1 \cdot u_1} u_1$

3.
$$u_3 = v_3 - \text{proj}_{\text{Span}\{u_1, u_2\}}(v_3)$$
 $= v_3 - \frac{v_3 \cdot u_1}{u_1 \cdot u_1} u_1 - \frac{v_3 \cdot u_2}{u_2 \cdot u_2} u_2$

1

m.
$$u_m = v_m - \text{proj}_{\text{Span}\{u_1, u_2, ..., u_{m-1}\}}(v_m) = v_m - \sum_{i=1}^{m-1} \frac{v_m \cdot u_i}{u_i \cdot u_i} u_i$$

Then $\{u_1, u_2, \dots, u_m\}$ is an *orthogonal* basis for the same subspace W.

In fact, for each i,

$$\mathsf{Span}\{u_1,u_2,\ldots,u_i\}=\mathsf{Span}\{v_1,v_2,\ldots,v_i\}.$$

Note if v_i is in $\operatorname{Span}\{v_1, v_2, \dots, v_{i-1}\} = \operatorname{Span}\{u_1, u_2, \dots, u_{i-1}\}$, then $v_i = \operatorname{proj}_{\operatorname{Span}\{u_1, u_2, \dots, u_{i-1}\}}(v_i)$, so $u_i = 0$. So this also detects linear dependence.

Subspaces

Definition

A **subspace** of \mathbb{R}^n is a subset V of \mathbb{R}^n satisfying:

- 1. The zero vector is in V.
- 2. If u and v are in V, then u + v is also in V. "closed under addition"

"not empty"

3. If u is in V and c is in R, then cu is in V. "closed under \times scalars"

Examples:

- ► Any Span $\{v_1, v_2, \ldots, v_m\}$.
- ▶ The *column space* of a matrix: $Col A = Span\{columns of A\}$.
- ▶ The range of a linear transformation (same as above).
- ▶ The *null space* of a matrix: Nul $A = \{x \mid Ax = 0\}$.
- ▶ The *row space* of a matrix: Row $A = \text{Span}\{\text{rows of } A\}$.
- ▶ The λ -eigenspace of a matrix, where λ is an eigenvalue.
- ▶ The orthogonal complement W^{\perp} of a subspace W.
- ► The zero subspace {0}.
- ightharpoonup All of \mathbb{R}^n .

Subspaces and Bases

Definition

Let V be a subspace of \mathbf{R}^n . A **basis** of V is a set of vectors $\{v_1, v_2, \dots, v_m\}$ in \mathbf{R}^n such that:

- 1. $V = \text{Span}\{v_1, v_2, \dots, v_m\}$, and
- 2. $\{v_1, v_2, \ldots, v_m\}$ is linearly independent.

The number of vectors in a basis is the **dimension** of V, and is written dim V.

Every subspace has a basis, so every subspace is a span. But subspaces have many different bases, and some might be better than others. For instance, Gram–Schmidt takes a basis and produces an *orthogonal* basis. Or, diagonalization produces a basis of *eigenvectors* of a matrix.

How do I know if a subset V is a subspace or not?

- ► Can you write *V* as one of the examples on the previous slide?
- ▶ If not, does it satisfy the three defining properties?

Note on subspaces versus subsets: A **subset** of \mathbb{R}^n is any collection of vectors whatsoever. Like, the unit circle in \mathbb{R}^2 , or all vectors with whole-number coefficients. A *subspace* is a subset that satisfies three additional properties. Most subsets are not subspaces.

Similarity

Definition

Two $n \times n$ matrices A and B are **similar** if there is an invertible $n \times n$ matrix P such that

$$A = PBP^{-1}$$
.

Important Facts:

- 1. Similar matrices have the same characteristic polynomial.
- 2. It follows that similar matrices have the same eigenvalues.
- 3. If A is similar to B and B is similar to C, then A is similar to C.

Caveats:

- 1. Matrices with the same characteristic polynomial need not be similar.
- 2. Similarity has nothing to do with row equivalence.
- 3. Similar matrices usually do not have the same eigenvectors.

Similarity

Geometric meaning

Let $A = PBP^{-1}$, and let v_1, v_2, \dots, v_n be the columns of P. These form a basis \mathcal{B} for \mathbb{R}^n because P is invertible. Key relation: for any vector x in \mathbb{R}^n ,

$$[Ax]_{\mathcal{B}}=B[x]_{\mathcal{B}}.$$

This says:

A acts on the usual coordinates of x in the same way that B acts on the \mathcal{B} -coordinates of x.

Example:

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Then $A = PBP^{-1}$. B acts on the usual coordinates by scaling the first coordinate by 2, and the second by 1/2:

$$B\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 2x_1 \\ x_2/2 \end{pmatrix}.$$

The unit coordinate vectors are eigenvectors: e_1 has eigenvalue 2, and e_2 has eigenvalue 1/2.

Similarity Example

$$A = \frac{1}{4} \begin{pmatrix} 5 & 3 \\ 3 & 5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix} \qquad P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \qquad [Ax]_{\mathcal{B}} = B[x]_{\mathcal{B}}.$$

In this case, $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$. Let $v_1=\binom{1}{1}$ and $v_2=\binom{1}{-1}$.

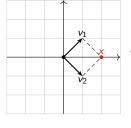
To compute y = Ax:

- 1. Find $[x]_{\mathcal{B}}$.
 - $2. \ [y]_{\mathcal{B}} = B[x]_{\mathcal{B}}.$
 - 3. Compute y from $[y]_{\mathcal{B}}$.

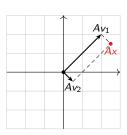
Say $x = \binom{2}{0}$.

- 1. $x = v_1 + v_2$ so $[x]_{\mathcal{B}} = \binom{1}{1}$.
- 2. $[y]_{\mathcal{B}} = B\binom{1}{1} = \binom{2}{1/2}$.
- 3. $y = 2v_1 + \frac{1}{2}v_2 = \binom{5/2}{3/2}$.

Picture:



A scales the v_1 coordinate by
2, and the v_2 coordinate by $\frac{1}{2}$.



Consistent and Inconsistent Systems

Definition

A matrix equation Ax = b is **consistent** if it has a solution, and **inconsistent** otherwise.

If A has columns v_1, v_2, \ldots, v_n , then

$$b = Ax = \begin{pmatrix} | & | & & | \\ v_1 & v_2 & \cdots & v_m \\ | & | & & | \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1v_1 + x_2v_2 + \cdots + x_nv_n.$$

So if Ax = b has a solution, then b is a linear combination of v_1, v_2, \ldots, v_n , and conversely. Equivalently, b is in Span $\{v_1, v_2, \ldots, v_n\} = \text{Col } A$.

Least-Squares Solutions

Suppose that Ax = b is *in*consistent. Let $\hat{b} = \text{proj}_{\text{Col } A}(b)$ be the closest vector for which $A\hat{x} = \hat{b}$ does have a solution.

Definition

A solution to $A\widehat{x} = \widehat{b}$ is a **least squares solution** to Ax = b. This is the solution \widehat{x} for which $A\widehat{x}$ is *closest* to b (with respect to the usual notion of distance in \mathbf{R}^n).

Theorem

The least-squares solutions to Ax = b are the solutions to

$$A^T A \hat{x} = A^T b.$$

If A has orthogonal columns u_1, u_2, \ldots, u_n , then the least-squares solution is

$$\widehat{x} = \left(\frac{x \cdot u_1}{u_1 \cdot u_1}, \ \frac{x \cdot u_2}{u_2 \cdot u_2}, \ \cdots, \ \frac{x \cdot u_m}{u_m \cdot u_m}\right)$$

because

$$\widehat{Ax} = \widehat{b} = \frac{x \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{x \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{x \cdot u_m}{u_m \cdot u_m} u_m.$$