

Announcements

Wednesday, August 22

- ▶ Everything you'll need to know is on the master website:

<http://people.math.gatech.edu/~cjankowski3/18f/m1553/webpage/>

or on the website for this section:

<http://people.math.gatech.edu/~jrabinoff/1819F-1553/>

(There are links on Canvas.) **Read them! Bookmark them!** Chances are, all your (non-math) questions are answered there.

- ▶ Warmup assignment is due on Friday at 11:59pm on WeBWorK.
- ▶ Enroll in Piazza (the link is on Canvas). You can ask questions there, and we will use it for in-class polling on a daily basis. **Please use your Canvas email address to enroll**, so that your poll responses show up in the Canvas gradebook.
- ▶ It's probably easiest to respond to polls using a smartphone. Download the Piazza app.
- ▶ My office is Skiles 244 and Rabinoff office hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
- ▶ Your TAs have office hours too. You can go to any of them. Details on the website.

Chapter 2

Systems of Linear Equations: Algebra

Section 2.1

Systems of Linear Equations

Recall that \mathbf{R} denotes the collection of all real numbers, i.e. the number line. It contains numbers like $0, -1, \pi, \frac{3}{2}, \dots$

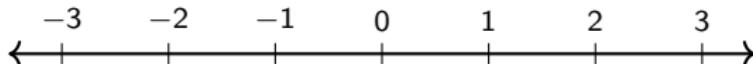
Definition

Let n be a positive whole number. We define

$$\mathbf{R}^n = \text{all ordered } n\text{-tuples of real numbers } (x_1, x_2, x_3, \dots, x_n).$$

Example

When $n = 1$, we just get \mathbf{R} back: $\mathbf{R}^1 = \mathbf{R}$. Geometrically, this is the *number line*.

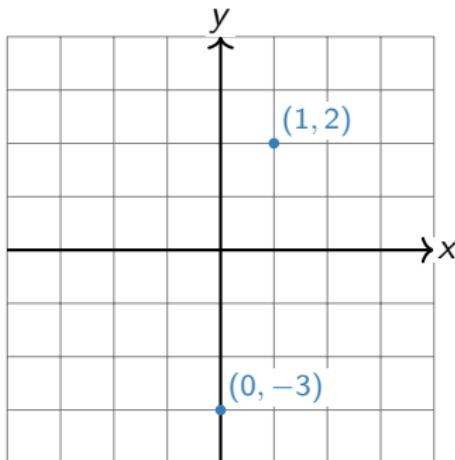


Line, Plane, Space, ...

Continued

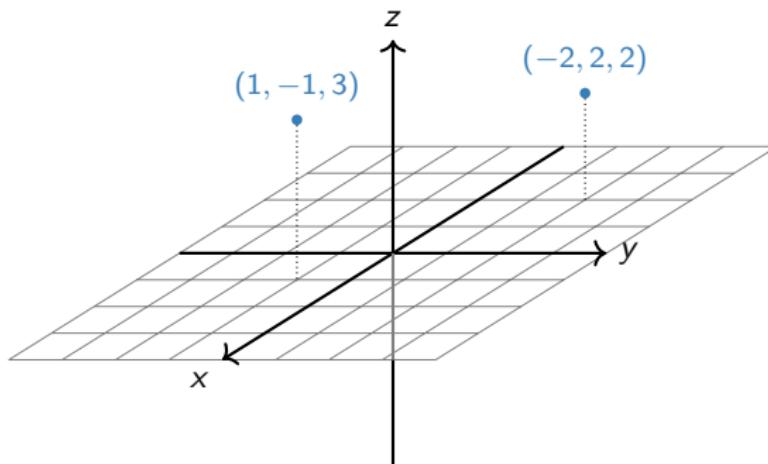
Example

When $n = 2$, we can think of \mathbf{R}^2 as the *plane*. This is because every point on the plane can be represented by an ordered pair of real numbers, namely, its x - and y -coordinates.



Example

When $n = 3$, we can think of \mathbf{R}^3 as the *space* we (appear to) live in. This is because every point in space can be represented by an ordered triple of real numbers, namely, its x -, y -, and z -coordinates.



Line, Plane, Space, ...

Continued

So what is \mathbf{R}^4 ? or \mathbf{R}^5 ? or \mathbf{R}^n ?

... go back to the *definition*: ordered n -tuples of real numbers

$$(x_1, x_2, x_3, \dots, x_n).$$

They're still "geometric" spaces, in the sense that our intuition for \mathbf{R}^2 and \mathbf{R}^3 sometimes extends to \mathbf{R}^n , but they're harder to visualize.

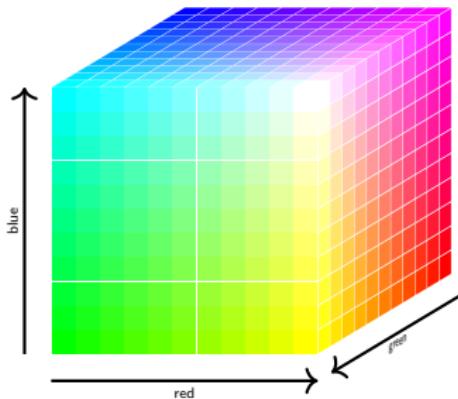
We'll make definitions and state theorems that apply to any \mathbf{R}^n , but we'll only draw pictures for \mathbf{R}^2 and \mathbf{R}^3 .

The power of using these spaces is the ability to use elements of \mathbf{R}^n to *label* various objects of interest, like solutions to systems of equations.

Labeling with \mathbf{R}^n

Example

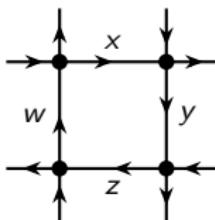
All colors you can see can be described by three quantities: the amount of red, green, and blue light in that color. Therefore, we can use the elements of \mathbf{R}^3 to *label* all colors: the point $(.2, .4, .9)$ labels the color with 20% red, 40% green, and 90% blue.



Labeling with \mathbf{R}^n

Example

Last time we could have used \mathbf{R}^4 to *label* the amount of traffic (x, y, z, w) passing through four streets.



For instance the point $(100, 20, 30, 150)$ corresponds to a situation where 100 cars per hour drive on road x , 20 cars per hour drive on road y , etc.

One Linear Equation

What does the solution set of a linear equation look like?

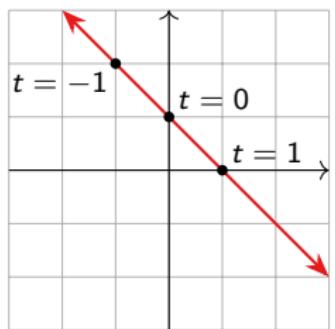
$x + y = 1$ \rightsquigarrow a line in the plane: $y = 1 - x$
This is called the **implicit equation** of the line.



We can write the same line in **parametric form** in \mathbb{R}^2 :

$$(x, y) = (t, 1 - t) \quad t \text{ in } \mathbb{R}.$$

This means that every point on the line has the form $(t, 1 - t)$ for some real number t . Note we are using \mathbb{R} to *label* the points on a line in \mathbb{R}^2 .



Aside

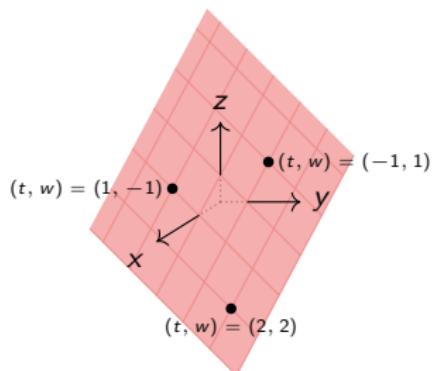
What is a line? A ray that is *straight* and infinite in both directions.

One Linear Equation

Continued

What does the solution set of a linear equation look like?

$x + y + z = 1 \rightsquigarrow$ a plane in space:
This is the **implicit equation** of the plane.



[interactive]

Does this plane have a **parametric form**?

$$(x, y, z) = (t, w, 1 - t - w) \quad t, w \text{ in } \mathbf{R}.$$

Note we are using \mathbf{R}^2 to *label* the points on a plane in \mathbf{R}^3 .

Aside

What is a plane? A flat sheet of paper that's infinite in all directions.

One Linear Equation

Continued

What does the solution set of a linear equation look like?

$x + y + z + w = 1 \rightsquigarrow$ a “3-plane” in “4-space” . . .

[not pictured here]

Poll

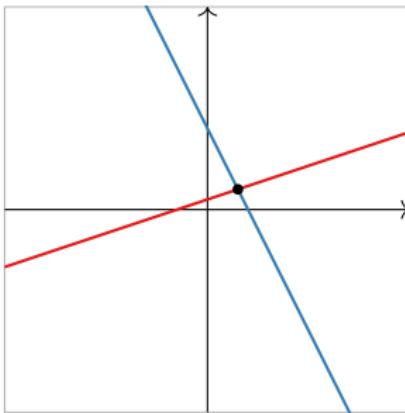
Everybody get out your gadgets!

Systems of Linear Equations

What does the solution set of a *system* of more than one linear equation look like?

$$x - 3y = -3$$

$$2x + y = 8$$



In general it's an intersection of lines, planes, etc.

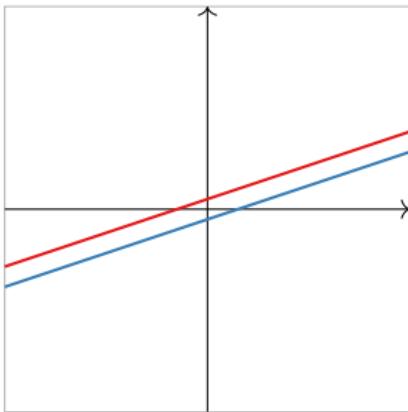
[two planes intersecting]

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$

$$x - 3y = 3$$



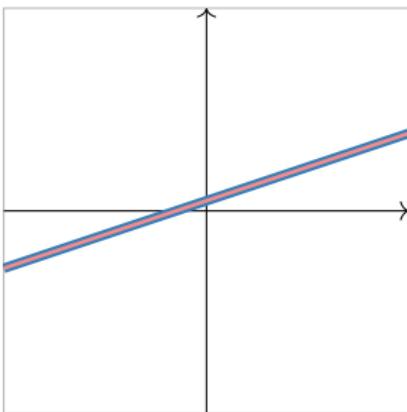
A system of equations with no solutions is called **inconsistent**.

Kinds of Solution Sets

In what other ways can two lines intersect?

$$x - 3y = -3$$

$$2x - 6y = -6$$



Note that multiplying an equation by a nonzero number gives the *same solution set*. In other words, they are *equivalent* (systems of) equations.

Poll

What about in three variables?

Summary

- ▶ \mathbf{R}^n is the set of ordered lists of n numbers.
- ▶ \mathbf{R}^n can be used to label geometric objects, like \mathbf{R}^2 can label points on a plane.
- ▶ The solutions of a system equations look like an intersection of lines, planes, etc.
- ▶ Finding all the solutions of a system of equations means finding a **parametric form**: a labeling by some \mathbf{R}^n .