

Announcements

Monday, August 27

- ▶ **Make sure your poll scores are in the gradebook.**
(Poll scores don't count until this Wednesday, 8/29.)
- ▶ WeBWorK 2.1 due on Wednesday at 11:59pm.
- ▶ The first quiz is on Friday, during recitation.
It covers **through section 2.1**.
 - ▶ Quizzes mostly test your understanding of the homework.
 - ▶ Quizzes last 10 minutes. Books, calculators, etc. are not allowed.
 - ▶ There will generally be a quiz every Friday when there's no midterm.
 - ▶ Check the schedule if you want to know what will be covered.
- ▶ My office is Skiles 244 and Rabin office hours are: Mondays, 12–1pm;
Wednesdays, 1–3pm.
- ▶ Your TAs have office hours too. You can go to any of them. Details on
the website.

Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

This is the kind of problem we'll talk about for the first half of the course.

- ▶ A **solution** is a list of numbers x, y, z, \dots that makes *all* of the equations true.
- ▶ The **solution set** is the collection of all solutions.
- ▶ **Solving** the system means finding the solution set in a “parameterized” form.

What is a *systematic* way to solve a system of equations?

Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

What strategies do you know?

Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

Elimination method: in what ways can you manipulate the equations?

Solving Systems of Equations

Example

Solve the system of equations

$$\begin{aligned}x + 2y + 3z &= 6 \\2x - 3y + 2z &= 14 \\3x + y - z &= -2\end{aligned}$$

Now I've eliminated x from the last equation!

... but there's a long way to go still. Can we make our lives easier?

Solving Systems of Equations

Better notation

It sure is a pain to have to write x, y, z , and $=$ over and over again.

Matrix notation: write just the numbers, in a box, instead!

$$\begin{array}{l} x + 2y + 3z = 6 \\ 2x - 3y + 2z = 14 \\ 3x + y - z = -2 \end{array} \xrightarrow{\text{becomes}} \left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

This is called an **(augmented) matrix**. Our equation manipulations become **elementary row operations**:

- ▶ Multiply all entries in a row by a nonzero number. **(scale)**
- ▶ Add a multiple of each entry of one row to the corresponding entry in another. **(row replacement)**
- ▶ Swap two rows. **(swap)**

Row Operations

Example

Solve the system of equations

$$\begin{array}{l} x + 2y + 3z = 6 \\ 2x - 3y + 2z = 14 \\ 3x + y - z = -2 \end{array}$$

Start:

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

Goal: we want our elimination method to eventually produce a system of equations like

$$x = A$$

$$y = B \quad \text{or in matrix form,}$$

$$z = C$$

So we need to do row operations that make the start matrix look like the end one.

Strategy (preliminary): fiddle with it so we only have ones and zeros. [\[animated\]](#)

Row Operations

Continued

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 2 & -3 & 2 & 14 \\ 3 & 1 & -1 & -2 \end{array} \right)$$

We want these to be zero.

So we subtract multiples of the first row.

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 6 \\ 0 & -7 & -4 & 2 \\ 0 & -5 & -10 & -20 \end{array} \right)$$

We want these to be zero.

It would be nice if this were a 1.

We could divide by -7 , but that would produce ugly fractions.

Let's swap the last two rows first.

Row Operations

Continued

$$\left(\begin{array}{ccc|c} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 4 \\ 0 & 0 & 10 & 30 \end{array} \right)$$

We want these to be zero.

Let's make this a 1 first.

Success!

Check:

$$\begin{aligned} x + 2y + 3z &= 6 & \text{substitute solution} \\ 2x - 3y + 2z &= 14 \\ 3x + y - z &= -2 \end{aligned}$$

Row Equivalence

Important

The process of doing row operations to a matrix does not change the solution set of the corresponding linear equations!

Definition

Two matrices are called **row equivalent** if one can be obtained from the other by doing some number of elementary row operations.

So the linear equations of row-equivalent matrices have the *same solution set*.

A Bad Example

Example

Solve the system of equations

$$\begin{array}{l} x + y = 2 \\ 3x + 4y = 5 \\ 4x + 5y = 9 \end{array}$$

Let's try doing row operations: [\[interactive row reducer\]](#)

First clear these by
subtracting multiples
of the first row.

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 \\ 3 & 4 & 5 \\ 4 & 5 & 9 \end{array} \right)$$

Now clear this by
subtracting
the second row.

$$\left(\begin{array}{ccc|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 1 & 1 \end{array} \right)$$

A Bad Example

Continued

$$\left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{array} \right) \xrightarrow{\text{~~~~~}} \text{translates into}$$

In other words, the original equations

$$\begin{array}{l} x + y = 2 \\ 3x + 4y = 5 \\ 4x + 5y = 9 \end{array} \quad \text{have the same solutions as} \quad \begin{array}{l} x + y = 2 \\ y = -1 \\ 0 = 2 \end{array}$$

But the latter system obviously has no solutions (there is no way to make them all true), so our original system has no solutions either.

Definition

A system of equations is called **inconsistent** if it has no solution. It is **consistent** otherwise.

Section 2.2

Row Reduction

Row Echelon Form

Let's come up with an *algorithm* for turning an arbitrary matrix into a "solved" matrix. What do we mean by "solved"?

A matrix is in **row echelon form** if

1. All zero rows are at the bottom.
2. Each leading nonzero entry of a row is to the *right* of the leading entry of the row above.
3. Below a leading entry of a row, all entries are *zero*.

Picture:

$$\left(\begin{array}{ccccc} \star & * & * & * & * \\ 0 & \star & * & * & * \\ 0 & 0 & 0 & \star & * \\ 0 & 0 & 0 & 0 & 0 \end{array} \right) \quad \begin{array}{l} * = \text{any number} \\ \star = \text{any nonzero number} \end{array}$$

Definition

A **pivot** \star is the first nonzero entry of a row of a matrix. A **pivot column** is a column containing a pivot of a matrix *in row echelon form*.

Reduced Row Echelon Form

A matrix is in **reduced row echelon form** if it is in row echelon form, and in addition,

4. The pivot in each nonzero row is equal to 1.
5. Each pivot is the only nonzero entry in its column.

Picture:

$$\begin{pmatrix} 1 & 0 & * & 0 & * \\ 0 & 1 & * & 0 & * \\ 0 & 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \quad \begin{array}{l} * = \text{any number} \\ 1 = \text{pivot} \end{array}$$

Note: Echelon forms do not care whether or not a column is augmented. Just ignore the vertical line.

Question

Can every matrix be put into reduced row echelon form only using row operations?

Answer: Yes! Stay tuned.

Reduced Row Echelon Form

Continued

Why is this the “solved” version of the matrix?

$$\left(\begin{array}{ccc|c} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{array} \right)$$

is in reduced row echelon form. It translates into

which is clearly the solution.

But what happens if there are fewer pivots than rows?

$$\left(\begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

... parametrized solution set (later).

Poll

Summary

- ▶ Solving a system of equations means producing all values for the unknowns that make all the equations true simultaneously.
- ▶ It is easier to solve a system of linear equations if you put all the coefficients in an **augmented matrix**.
- ▶ Solving a system using the elimination method means doing **elementary row operations** on an augmented matrix.
- ▶ Two systems or matrices are **row-equivalent** if one can be obtained from the other by doing a sequence of elementary row operations.
Row-equivalent systems have the *same solution set*.
- ▶ A linear system with no solutions is called **inconsistent**.
- ▶ The (reduced) row echelon form of a matrix is its “solved” row-equivalent version.