

Announcements

Wednesday, September 05

- ▶ WeBWorK 2.2, 2.3 due today at 11:59pm.
- ▶ The quiz on Friday covers through §2.3 (last week's material).
- ▶ My office is Skiles 244 and Rabinoffice hours are: Mondays, 12–1pm; Wednesdays, 1–3pm.
- ▶ Your TAs have office hours too. You can go to any of them. Details on the website.

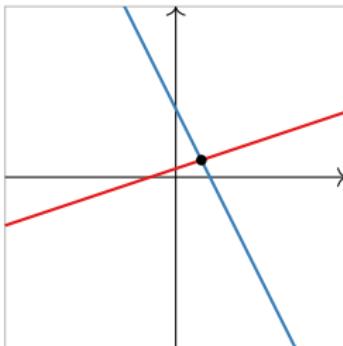
Chapter 3

Systems of Linear Equations: Geometry

Motivation

We want to think about the *algebra* in linear algebra (systems of equations and their solution sets) in terms of *geometry* (points, lines, planes, etc).

$$\begin{aligned}x - 3y &= -3 \\2x + y &= 8\end{aligned}$$



This will give us better insight into the properties of systems of equations and their solution sets.

Remember: I expect you to be able to draw pictures!

Section 3.1

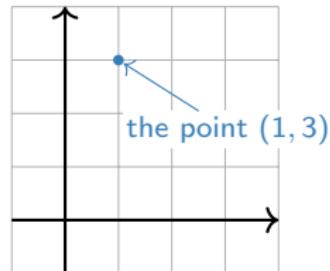
Vectors

Points and Vectors

We have been drawing elements of \mathbf{R}^n as points in the line, plane, space, etc.
We can also draw them as arrows.

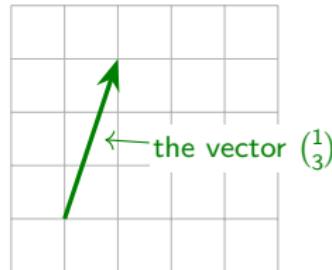
Definition

A **point** is an element of \mathbf{R}^n , drawn as a point (a dot).



A **vector** is an element of \mathbf{R}^n , drawn as an arrow.
When we think of an element of \mathbf{R}^n as a vector,
we'll usually write it vertically, like a matrix with
one column:

$$v = \begin{pmatrix} 1 \\ 3 \end{pmatrix}.$$



[interactive]

The difference is purely psychological: *points and vectors are just lists of numbers.*

Points and Vectors

So why make the distinction?

A vector need not start at the origin: *it can be located anywhere!* In other words, an arrow is determined by its length and its direction, not by its location.

These arrows all represent the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

However, unless otherwise specified, we'll assume a vector starts at the origin.

Vector Algebra

Definition

- We can add two vectors together:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a + x \\ b + y \\ c + z \end{pmatrix}.$$

- We can multiply, or **scale**, a vector by a real number c :

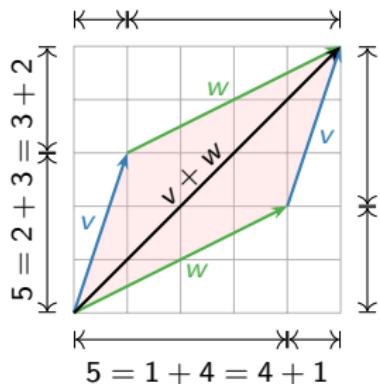
$$c \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} c \cdot x \\ c \cdot y \\ c \cdot z \end{pmatrix}.$$

We call c a **scalar** to distinguish it from a vector. If v is a vector and c is a scalar, cv is called a **scalar multiple** of v .

(And likewise for vectors of length n .) For instance,

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 5 \\ 7 \\ 9 \end{pmatrix} \quad \text{and} \quad -2 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -2 \\ -4 \\ -6 \end{pmatrix}.$$

Vector Addition and Subtraction: Geometry



The parallelogram law for vector addition

Geometrically, the sum of two vectors v, w is obtained as follows: place the tail of w at the head of v . Then $v + w$ is the vector whose tail is the tail of v and whose head is the head of w . Doing this both ways creates a **parallelogram**. For example,

$$\begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 5 \end{pmatrix}.$$

Why? The width of $v + w$ is the sum of the widths, and likewise with the heights. [\[interactive\]](#)

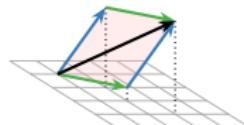
Vector subtraction

Geometrically, the difference of two vectors v, w is obtained as follows: place the tail of v and w at the same point. Then $v - w$ is the vector from the head of w to the head of v . For example,

$$\begin{pmatrix} 1 \\ 4 \end{pmatrix} - \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}.$$

Why? If you add $v - w$ to w , you get v . [\[interactive\]](#)

This works in higher dimensions too!

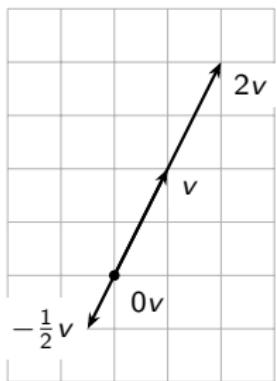


Scalar Multiplication: Geometry

Scalar multiples of a vector

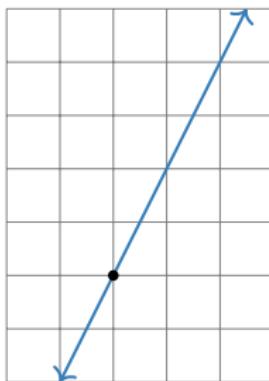
These have the same *direction* but a different *length*.

Some multiples of v .



All multiples of v .

$$\begin{aligned}v &= \begin{pmatrix} 1 \\ 2 \end{pmatrix} \\2v &= \begin{pmatrix} 2 \\ 4 \end{pmatrix} \\-\frac{1}{2}v &= \begin{pmatrix} -\frac{1}{2} \\ -1 \end{pmatrix} \\0v &= \begin{pmatrix} 0 \\ 0 \end{pmatrix}\end{aligned}$$



[interactive]

So the scalar multiples of v form a *line*.

Linear Combinations

We can add and scalar multiply in the same equation:

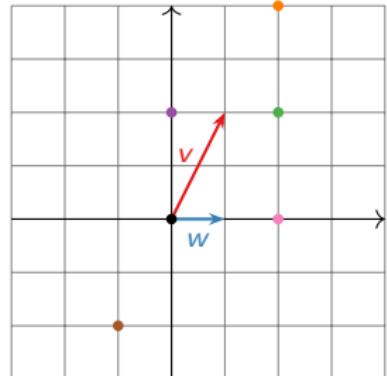
$$w = c_1 v_1 + c_2 v_2 + \cdots + c_p v_p$$

where c_1, c_2, \dots, c_p are scalars, v_1, v_2, \dots, v_p are vectors in \mathbf{R}^n , and w is a vector in \mathbf{R}^n .

Definition

We call w a **linear combination** of the vectors v_1, v_2, \dots, v_p . The scalars c_1, c_2, \dots, c_p are called the **weights** or **coefficients**.

Example



Let $v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ and $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w ?

- ▶ $v + w$
- ▶ $v - w$
- ▶ $2v + 0w$
- ▶ $2w$
- ▶ $-v$

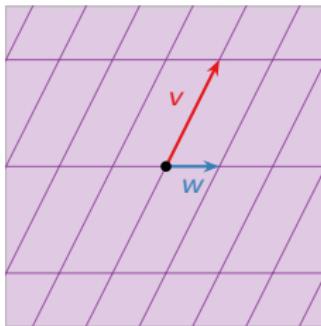
[interactive: 2 vectors]

[interactive: 3 vectors]

Poll

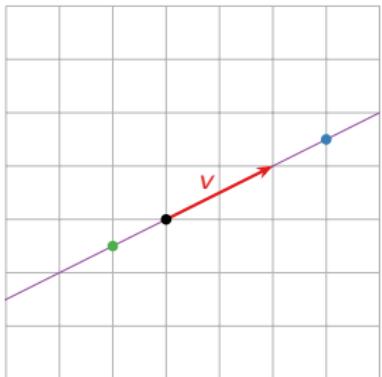
Is there any vector in \mathbb{R}^2 that is *not* a linear combination of v and w ?

No: in fact, *every* vector in \mathbb{R}^2 is a combination of v and w .



(The purple lines are to help measure *how much* of v and w you need to get to a given point.)

More Examples

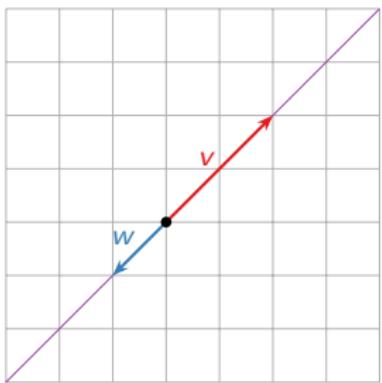


What are some linear combinations of $v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$?

- ▶ $\frac{3}{2}v$
- ▶ $-\frac{1}{2}v$
- ▶ ...

What are *all* linear combinations of v ?

All vectors cv for c a real number. I.e., all *scalar multiples* of v . These form a *line*.



Question

What are all linear combinations of

$$v = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \quad \text{and} \quad w = \begin{pmatrix} -1 \\ -1 \end{pmatrix}?$$

Answer: The line which contains both vectors.

What's different about this example and the one on the poll? [interactive]

Section 3.2

Vector Equations and Spans

Systems of Linear Equations

Solve the following system of linear equations:

$$\begin{aligned}x - y &= 8 \\2x - 2y &= 16 \\6x - y &= 3.\end{aligned}$$

We can write all three equations at once as vectors:

$$\begin{pmatrix} x - y \\ 2x - 2y \\ 6x - y \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}.$$

We can write this as a linear combination:

$$x \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} + y \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}.$$

So we are asking:

Question: Is $\begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$ a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix}$?

Systems of Linear Equations

Continued

$$\begin{array}{l} x - y = 8 \\ 2x - 2y = 16 \\ 6x - y = 3 \end{array} \quad \xrightarrow{\text{matrix form}}$$

$$\left(\begin{array}{cc|c} 1 & -1 & 8 \\ 2 & -2 & 16 \\ 6 & -1 & 3 \end{array} \right)$$

$\xrightarrow{\text{row reduce}}$

$$\left(\begin{array}{cc|c} 1 & 0 & -1 \\ 0 & 1 & -9 \\ 0 & 0 & 0 \end{array} \right)$$

$\xrightarrow{\text{solution}}$

$$\begin{array}{l} x = -1 \\ y = -9 \end{array}$$

Conclusion:

$$- \begin{pmatrix} 1 \\ 2 \\ 6 \end{pmatrix} - 9 \begin{pmatrix} -1 \\ -2 \\ -1 \end{pmatrix} = \begin{pmatrix} 8 \\ 16 \\ 3 \end{pmatrix}$$

[interactive] ← (this is the picture of a *consistent* linear system)

What is the relationship between the vectors in the linear combination and the matrix form of the linear equation? They have the same columns!

Shortcut: You can go directly between augmented matrices and vector equations.

Vector Equations and Linear Equations

Summary

The vector equation

$$x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b,$$

where v_1, v_2, \dots, v_p, b are vectors in \mathbb{R}^n and x_1, x_2, \dots, x_p are scalars, has the same solution set as the linear system with augmented matrix

$$\left(\begin{array}{ccccc|c} | & | & & | & | \\ v_1 & v_2 & \cdots & v_p & b \\ | & | & & | & | \end{array} \right),$$

where the v_i 's and b are the columns of the matrix.

So we now have (at least) *two* equivalent ways of thinking about linear systems of equations:

1. Augmented matrices.
2. Linear combinations of vectors (vector equations).

The last one is more geometric in nature.

Span

It is important to know what are *all* linear combinations of a set of vectors v_1, v_2, \dots, v_p in \mathbf{R}^n : it's exactly the collection of all b in \mathbf{R}^n such that the vector equation (in the unknowns x_1, x_2, \dots, x_p)

$$x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b$$

has a solution (i.e., is consistent).

Definition

Let v_1, v_2, \dots, v_p be vectors in \mathbf{R}^n . The **span** of v_1, v_2, \dots, v_p is the collection of all linear combinations of v_1, v_2, \dots, v_p , and is denoted $\text{Span}\{v_1, v_2, \dots, v_p\}$. In symbols:

$$\rightarrow \text{Span}\{v_1, v_2, \dots, v_p\} = \{ x_1 v_1 + x_2 v_2 + \cdots + x_p v_p \mid x_1, x_2, \dots, x_p \text{ in } \mathbf{R} \}.$$

Synonyms: $\text{Span}\{v_1, v_2, \dots, v_p\}$ is the subset **spanned by** or **generated by** v_1, v_2, \dots, v_p .

This is the first of several definitions in this class that you simply **must learn**. I will give you other ways to think about Span, and ways to draw pictures, but *this is the definition*. Having a vague idea what Span means will not help you solve any exam problems!

Span

Continued

Now we have several equivalent ways of making the same statement:

1. A vector b is in the span of v_1, v_2, \dots, v_p .
2. The vector equation

$$x_1 v_1 + x_2 v_2 + \cdots + x_p v_p = b$$

has a solution.

3. The linear system with augmented matrix

$$\left(\begin{array}{cccc|c} | & | & & | & | \\ v_1 & v_2 & \cdots & v_p & b \\ | & | & & | & | \end{array} \right)$$

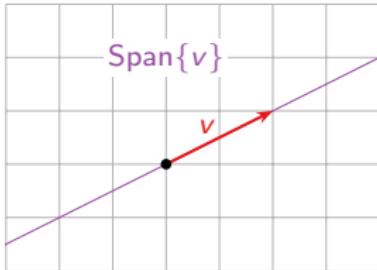
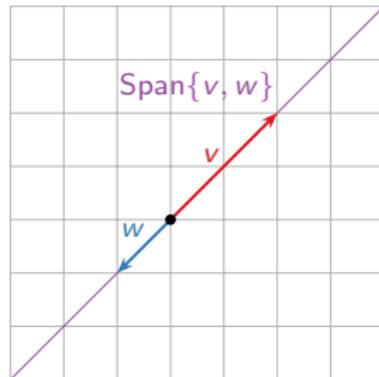
is consistent.

[interactive example] ← (this is the picture of an *inconsistent* linear system)

Note: **equivalent** means that, for any given list of vectors v_1, v_2, \dots, v_p, b , either all three statements are true, or all three statements are false.

Pictures of Span

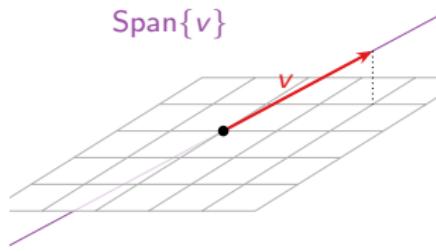
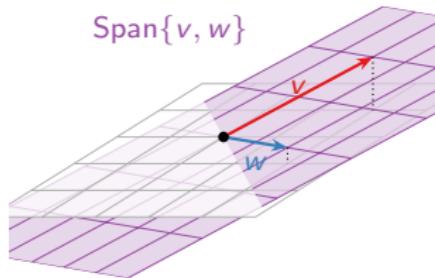
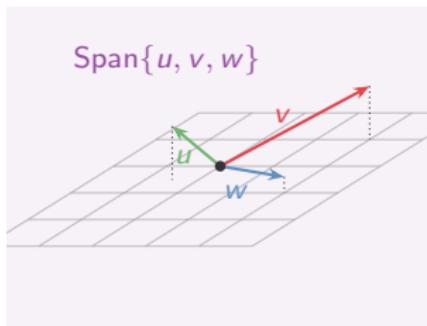
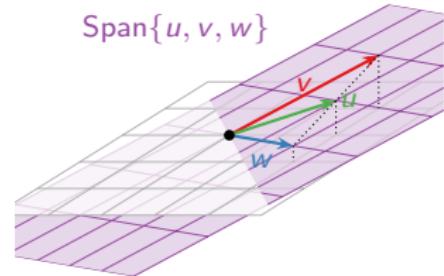
Drawing a picture of $\text{Span}\{v_1, v_2, \dots, v_p\}$ is the same as drawing a picture of all linear combinations of v_1, v_2, \dots, v_p .



[interactive: span of two vectors in \mathbf{R}^2]

Pictures of Span

In \mathbb{R}^3



[interactive: span of two vectors in \mathbb{R}^3]

[interactive: span of three vectors in \mathbb{R}^3]

Poll

How many vectors are in $\text{Span} \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$?

- A. Zero
- B. One
- C. Infinity

In general, it appears that $\text{Span}\{v_1, v_2, \dots, v_p\}$ is the smallest “linear space” (line, plane, etc.) containing the origin and all of the vectors v_1, v_2, \dots, v_p .

We will make this precise later.

Summary

The whole lecture was about drawing pictures of systems of linear equations.

- ▶ **Points** and **vectors** are two ways of drawing elements of \mathbf{R}^n . Vectors are drawn as arrows.
- ▶ Vector addition, subtraction, and scalar multiplication have geometric interpretations.
- ▶ A **linear combination** is a sum of scalar multiples of vectors. This is also a geometric construction, which leads to lots of pretty pictures.
- ▶ The **span** of a set of vectors is the set of all linear combinations of those vectors. It is also fun to draw.
- ▶ A system of linear equations is equivalent to a vector equation, where the unknowns are the coefficients of a linear combination.